ENVIRONMENTAL DECLARATION
(CALIFORNIA FISH AND GAME CODE SECTION 711.4)

LEAD AGENCY NAME AND ADDRESS
City of San Leandro
Attn: Anjana Meplan
835 East 14th Street
San Leandro, CA 94577

FOR COUNTY CLERK USE ONLY

ENDORSED
FILED
ALAMEDA COUNTY
MAR 08 2019
MELISSA WILK, County Clerk

FILE NO: 19-131

CLASSIFICATION OF ENVIRONMENTAL DOCUMENT:
(PLEASE MARK ONLY ONE CLASSIFICATION)

1. NOTICE OF EXEMPTION / STATEMENT OF EXEMPTION
 [] A - STATUTORILY OR CATEGORICALLY EXEMPT
 $ 50.00 - COUNTY CLERK HANDLING FEE

2. NOTICE OF DETERMINATION (NOD)
 [] A - NEGATIVE DECLARATION (OR MITIGATED NEG. DEC.)
 $ 2,354.75 - STATE FILING FEE
 $ 50.00 - COUNTY CLERK HANDLING FEE
 [] B - ENVIRONMENTAL IMPACT REPORT (EIR)
 $ 3,271.00 - STATE FILING FEE
 $ 50.00 - COUNTY CLERK HANDLING FEE

3. OTHER: NOTICE OF DETERMINATION (NOD) - INFILL PROJECT
 [x] A - NO ADDITIONAL ENVIRONMENTAL REVIEW REQUIRED
 $ 50.00 - COUNTY CLERK HANDLING FEE

***A COPY OF THIS FORM MUST BE COMPLETED AND SUBMITTED WITH EACH COPY OF AN
ENVIRONMENTAL DECLARATION BEING FILED WITH THE ALAMEDA COUNTY CLERK.***

BY MAIL FILINGS:
PLEASE INCLUDE FIVE (5) COPIES OF ALL NECESSARY DOCUMENTS AND TWO (2) SELF-ADDRESSED
ENVELOPES.

IN PERSON FILINGS:
PLEASE INCLUDE FIVE (5) COPIES OF ALL NECESSARY DOCUMENTS AND ONE (1) SELF-ADDRESSED
ENVELOPES.

ALL APPLICABLE FEES MUST BE PAID AT THE TIME OF FILING.
FEES ARE EFFECTIVE JANUARY 1, 2019
MAKE CHECKS PAYABLE TO: ALAMEDA COUNTY CLERK
Notice of Determination

To: X Office of Planning and Research
 P.O. Box 3044
 Sacramento, CA 95812-3044

X County Clerk
 County of Alameda
 1106 Madison Street
 Oakland, CA 94607

From: Lead Agency
 City of San Leandro
 835 East 14th Street
 San Leandro, CA 94577

Contact: Anjana Mepani, Senior Planner
Phone: (510) 577-3348

SUBJECT: Filing of Notice of Determination for Infill Project in compliance with Section 21094.5 of the Public Resources Code.

State Clearinghouse Number (if submitted to State Clearinghouse): 2001092001 (San Leandro General Plan Update Environmental Impact Report (previously certified)

Project Title: 915 Antonio Street (also known as 899 Alvarado) and 844 Alvarado Street Project

Project Applicant: Maximus Antonio Alvarado LLC

Project Location (include County): 915 Antonio Street and 844 Alvarado Street, San Leandro, CA 94577, County of Alameda

Project Description: The 915 Antonio Street and 844 Alvarado Street Project would demolish the existing buildings on the primarily vacant 915 Antonio Street site and construct a 687-unit multi-family residential development. The project would also construct a one-story music conservatory building on the vacant 844 Alvarado Street site. The Project qualifies as an Infill Project under Public Resources Code Section 21094.5 and CEQA Guidelines Section 15183.3. The environmental impacts of development of the Project area were previously analyzed under (1) the certified City of San Leandro 2035 General Plan Update Environmental Impact Report (SCH # 2001092001) (EIR); and (2) the certified 2007 Downtown Transit Oriented District (TOD) EIR (collectively, “Prior EIRs”). The Lead Agency, after preparing an Infill Checklist examining the effects of the Infill project in light of the analysis in the Prior EIRs and uniformly applicable development policies or standards, found that no additional CEQA review was required for the Project under Public Resources Code Section 21094.5 and CEQA Guidelines Section 15183.3.

This is to advise that the City of San Leandro as Lead Agency has approved the above described project on March 7, 2019 and has made the following determinations regarding the above described project.

1. The project will not cause any new specific effects or more significant effects on the environment beyond those identified in the prior EIRs, or that uniformly applicable development policies or standards described in the Infill Checklist prepared for the project would substantially mitigate such effects.
2. An Environmental Impact Report was previously prepared for this project pursuant to the provisions of CEQA.
3. Applicable Mitigation Measures as described in the Infill Checklist were made a condition of the approval of the project.
4. A mitigation reporting or monitoring plan was previously adopted for this project.
5. A Statement of Overriding Considerations was previously adopted for this project as part of the Prior EIRs.
6. Findings were made pursuant to the provisions of CEQA.

This is to certify that the Infill Checklist, Prior EIRs, and the record of project approval are available to the General Public at: City of San Leandro, 835 East 14th Street, San Leandro, CA 94577.

Dated: March 7, 2019

Anjana Mepani, Senior Planner

Date Received for filing at OPR: ________________________

Authority Cited Public Resources Code Section 21083.
Reference Public Resources Code Sections 21000-21174.
1.0 INTRODUCTION
1.0 INTRODUCTION

1.1 INTRODUCTION AND REGULATORY GUIDANCE

This CEQA Infill Checklist evaluates the potential environmental effects of the 915 Antonio Street and 844 Alvarado Street Project, a proposed transit-oriented development in downtown San Leandro. In planning for such projects, the City of San Leandro developed the Downtown San Leandro Transit-Oriented Development (TOD) Strategy (San Leandro 2007a) to establish a land use framework, a comprehensive circulation system, design and development guidelines, and a series of implementation actions to guide new development in this 502-acre area. The strategy's two guiding goals are to increase transit ridership and to enhance downtown San Leandro as a vibrant, pedestrian-oriented destination with a strong sense of place and civic identity. On June 5, 2007, the City of San Leandro certified the Downtown San Leandro Transit-Oriented Development Strategy Final Environmental Impact Report (FEIR) (San Leandro 2007b).

Subsequently, the City prepared an update of its General Plan (San Leandro 2016a), which incorporates and implements the TOD Strategy, and an EIR that contains an evaluation of environmental impacts, references uniformly applicable development policies, and relies on those policies (including a requirement to update the TOD Strategy) and mitigation measures to reduce environmental effects. The City's General Plan Update FEIR (San Leandro 2016b) was certified on September 19, 2016.

This document contains an Infill Checklist that tiers off the 2016 General Plan Update EIR (San Leandro 2016b). This prior EIR was prepared as part of enacting the City's General Plan Update and zoning code (CEQA Guidelines 15183.3). This Infill Checklist demonstrates that any significant effects of the 915 Antonio Street and 844 Alvarado Street Project (project) were analyzed in this prior EIR (the 2016 General Plan EIR) or would be substantially mitigated by the City's uniformly applicable development policies. Pursuant to Public Resources Code Section 21094.5, such impacts are exempt under the California Environmental Quality Act (CEQA) and do not require further environmental analysis. Furthermore, this Infill Checklist incorporates supporting information and impact analysis from the Downtown TOD EIR where applicable (San Leandro 2007b).

This Infill Checklist has been prepared in accordance with Public Resources Code Section 21000 et seq. and the CEQA Guidelines, California Code of Regulations Section 15000 et seq. An infill checklist is prepared by a lead agency to streamline the environmental review process for eligible infill projects by limiting the topics subject to review at the project level where the effects of infill development have been addressed in a planning-level decision or by uniformly applicable development policies. The Initial Study does not address aesthetics. Pursuant to Public Resources Code Section 21099, aesthetic impacts of a residential, mixed-use residential, or employment center project on an infill site within a transit priority area shall not be considered significant impacts on the environment.

The impact analysis tiers off the General Plan Update EIR (San Leandro 2016b) but also refers to the TOD EIR (San Leandro 2007b). Both of these EIRs supported planning-level decisions and this Infill Checklist refers to their information, policies, and mitigation measures. In accordance with CEQA Guidelines Section 15183.3, if the infill project would result in new specific effects or more significant effects, and uniformly applicable development policies or standards would not substantially mitigate such effects, those effects are subject to further review under CEQA. If those effects would be potentially significant, the lead agency must prepare an infill EIR.

SENATE BILL 743

Senate Bill (SB) 743, enacted in 2013, amended CEQA to provide that “aesthetics and parking impacts of a residential, mixed-use residential, or employment center project on an infill site within
1.0 INTRODUCTION

A transit priority area shall not be considered significant impacts on the environment.” Aesthetics and parking will no longer be considered in determining whether a project has the potential to result in significant environmental effects, provided a project meets the following three criteria:

1. The project is in a transit priority area;\(^1\) and
2. The project is on an infill site;\(^2\) and
3. The project is residential, mixed-use residential, or an employment center.

The project meets these criteria, as it is within 0.5 miles of the San Leandro BART station, is in an urban area that has previously been developed, and is a residential project. Because of the project’s consistency with SB 743 criteria, aesthetics issues are not considered to be impacts under CEQA and are not addressed in this Infill Checklist.

1.2 LEAD AGENCY

The lead agency is the public agency with primary responsibility over a proposed project. Where two or more public agencies will be involved with a project, CEQA Guidelines Section 15051 provides criteria for identifying the lead agency. In accordance with CEQA Guidelines Section 15051(b)(1), “the lead agency will normally be the agency with general governmental powers, such as a city or county, rather than an agency with a single or limited purpose.” Based on the criteria above, the City of San Leandro (City) is the lead agency for the project.

1.3 PURPOSE AND DOCUMENT ORGANIZATION

The purpose of this Infill Checklist is to evaluate the project’s potential environmental impacts. This document is divided into the following sections:

1.0 Introduction – This section provides an introduction and describes the purpose and organization of the document.

2.0 Project Information – This section provides general information regarding the project, including the project title, lead agency and address, contact person, brief description of the project location, General Plan land use designation and zoning district, prior environmental document and its location, identification of surrounding land uses, and identification of other public agencies whose review, approval, and/or permits may be required. This section also includes an explanation as to how the project satisfies the CEQA Appendix M performance standards for use of the Appendix N infill checklist. The section concludes with a list of the environmental factors that are potentially affected by the project and what CEQA document is required for compliance.

3.0 Project Description – This section describes the proposed project in detail.

4.0 Infill Checklist – This section describes the environmental setting and an overview for each of the environmental subject areas. It evaluates a range of impacts, how the impact was covered in the City’s 2035 General Plan Update EIR, and characterizes each impact as “Significant

\(^1\) A transit priority area is defined as an area that is within 0.5 miles of a major transit stop that is existing or planned (if the project is scheduled to be completed within the planning horizon included in an adopted federal Transportation Improvement Program, per Public Resources Code Section 21099(a)(7).

\(^2\) An infill site is defined as a lot located in an urban area that has been previously developed, or on a vacant site where at least 75 percent of the perimeter of the site adjoins or is separated only by an improved public right-of-way from parcels that are developed with qualified urban uses, per Public Resources Code Section 21099(a)(4).
1.0 INTRODUCTION

Impact,” “Less Than Significant or Less Than Significant with Mitigation Incorporated,” “No Impact,” “Analyzed in the Prior EIR” or “Substantially Mitigated by Uniformly Applicable Development Policies” in response to the environmental checklist.

5.0 References – This section lists documents, websites, people, and other sources consulted during the preparation of this Infill Checklist.

1.4 EVALUATION OF ENVIRONMENTAL IMPACTS

Section 4.0, Infill Checklist, is the analysis portion of this document. The section evaluates the project’s potential environmental impacts. Section 4.0 includes 17 environmental resource subsections, including CEQA Mandatory Findings of Significance. The environmental resource subsections, numbered 1 through 17, consist of the following:

1. Agriculture and Forestry Resources
2. Air Quality
3. Biological Resources
4. Cultural Resources/Tribal Cultural Resources
5. Geology and Soils
6. Greenhouse Gases
7. Hazards and Hazardous Materials
8. Hydrology and Water Quality
9. Land Use and Planning
10. Mineral Resources
11. Noise
12. Population and Housing
13. Public Services
14. Recreation
15. Transportation/Traffic
16. Utilities and Service Systems
17. Mandatory Findings of Significance

Each environmental resource subsection is organized in the following manner:

As necessary, Setting discussions are included to summarize the existing conditions at the regional, subregional, and local levels and to identify applicable plans and technical information for the particular resource area.

The Environmental Checklist and Discussion discusses each checklist question in detail. The level of significance for each topic is determined by considering the predicted magnitude of the impact. Five levels of impact significance are evaluated in this Infill Checklist:

Significant Impact: An impact that was not identified in the prior EIR and may have a “substantial, or potentially substantial, adverse change in any of the physical conditions within the area affected by the project” (CEQA Guidelines Section 15382).

Less Than Significant or Less Than Significant with Mitigation Incorporated: The impact would not result in a substantial adverse change in the environment or is an impact that may have a “substantial, or potentially substantial, adverse change in any of the physical conditions within the area affected by the project” (CEQA Guidelines Section 15382). However, the incorporation of mitigation measures would reduce the project-specific impact to less than significant.

No Impact: No project-related impact on the environment would occur with project development for a new specific effect that was not addressed in the prior EIR and that is specific to the infill project or the infill project site.
1.0 INTRODUCTION

Analyzed in the Prior EIR: Effects of the infill project were analyzed in a prior EIR and would be the same as or less than those described in the prior EIR.

Substantially Mitigated by Uniformly Applicable Development Policies: Uniformly applicable development policies or standards will substantially mitigate new specific project effects or more significant effects. “Substantially mitigate” means that the policy or standard will substantially reduce the effect but not necessarily to less than significant (CEQA Guidelines Section 15183.3).
2.0 PROJECT INFORMATION
1. **Project title:** 915 Antonio Street (also known as 899 Alvarado) and 844 Alvarado Street Project

2. **Lead agency name and address:** City of San Leandro
 835 East 14th Street
 San Leandro, CA 94577

3. **Contact person and phone number:** Anjana Mepani, Senior Planner
 Community Development Department
 City of San Leandro
 (510) 577-3348

4. **Project location:** The project area includes the 915 Antonio Street site and the 844 Alvarado Street site.

 The 915 Antonio Street site is bounded by Lola Street to the north, Alvarado Street to the east, an auto dealership to the south, and railroad tracks to the west (Assessor’s Parcel Numbers [APNs] 075-0057-012-1, 075-0057-001, 075-0155-015, 075-0155-011, 075-0155-012, and 075-0155-017 and the Antonio Street right-of-way [no APN]).

 The 844 Alvarado Street site is bounded by development to the north, east, and south and by Alvarado Street to the west (APN 075-0054-003).

5. **Project sponsor’s name and address:** Maximus Antonio Alvarado, LLC
 Contact: Andrew Johnson
 1 Maritime Plaza, Suite 1900
 San Francisco, CA 94111
 (415) 323-4116

6. **General Plan designation:** Transit-Oriented Development Mixed Use (MUTOD)

7. **Zoning:** Downtown Area 4, Special Review Overlay District (DA-4S)

8. **Prior environmental document:** San Leandro General Plan Update Environmental Impact Report (State Clearinghouse #2001092001)

9. **Location of prior environmental document:** City of San Leandro
 835 East 14th Street
 San Leandro, CA 94577

10. **Project description:** The project would demolish the existing buildings on the primarily vacant 915 Antonio Street site and construct a 687-unit residential structure. The project would also construct a one-story music
2.0 PROJECT INFORMATION

conservatory building on the vacant 844 Alvarado Street site.

11. Surrounding land uses and setting: The project site is in an urbanized environment with commercial, industrial, and single-family residential structures, as well as vacant land.

12. Other public agencies whose approval is required: None
SATISFACTION OF APPENDIX M PERFORMANCE STANDARDS

According to CEQA Guidelines Appendix M, in the case of mixed-use projects, the performance standards that apply to the predominant use shall govern the entire project. As described in Section 3.0, Project Description, the proposed project would include approximately 502,346 square feet of residential use, an approximately 550-square-foot café, and an approximately 4,326-square-foot music conservatory building. Therefore, the project is considered residential for the purpose of considering the Appendix M Performance Standards, as detailed below.

1. Does the nonresidential project include a renewable energy feature?

 This is a residential project. Therefore, this performance standard is not applicable.

2. If the project site is included on any list compiled pursuant to Section 65962.5 of the Government Code, either provide documentation of remediation or describe recommendations provided in a preliminary endangerment assessment or comparable document that will be implemented as part of the project.

 The 915 Antonio Street site is on a list compiled pursuant to Section 65962.5 of the Government Code (the Cortese List) due to the former operations of the now-demolished Caterpillar facility. As described in subsection 4.7, Hazards and Hazardous Materials, of this document, Phase I and Phase II Environmental Site Assessments have been performed to assess the site, and design measures have been incorporated into the project to address potential issues.

3. If the infill project includes residential units located within 500 feet, or such distance that the local agency or local air district has determined is appropriate based on local conditions, of a high-volume roadway or other significant source of air pollution, as defined in Appendix M, describe the measures that the project will implement to protect public health. Such measures may include policies and standards identified in the local general plan, specific plans, zoning code or community risk reduction plan, or measures recommended in a health risk assessment, to promote the protection of public health.

 The project site is not located within 500 feet of a high-volume roadway or other significant source of air pollution. Therefore, this performance standard is not applicable.

4. For residential projects, the project satisfies which of the following?

 - Located within a low vehicle travel area, as defined in Appendix M. (Attach VMT map.)
 - Located within 1/2 mile of an existing major transit stop or an existing stop along a high-quality transit corridor. (See Figure 3.0-2 illustrating the project site’s proximity to transit.)
 - Consists of 300 or fewer units that are each affordable to low-income households. (Attach evidence of legal commitment to ensure the continued availability and use of the housing units for lower income households, as defined in Section 50079.5 of the Health and Safety Code, for a period of at least 30 years, at monthly housing costs, as determined pursuant to Section 50053 of the Health and Safety Code.)

5. For commercial projects with a single building floor-plate below 50,000 square feet, the project satisfies which of the following?

 This is a residential project. Therefore, this performance standard is not applicable.
6. For office building projects, the project satisfies which of the following?

 This is a residential project. Therefore, this performance standard is not applicable.

7. For school projects, the project satisfies which of the following?

 This is a residential project. Therefore, this performance standard is not applicable.

8. For small walkable community projects, the project must be a residential project that has a density of at least eight units to the acre or a commercial project with a floor area ratio of at least 0.5, or both.

 Although project density would be greater than 8 units per acre, the project is not a small walkable project. Therefore, this performance standard is not applicable.
ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED:

The infill project could potentially result in one or more of the following environmental effects.

<table>
<thead>
<tr>
<th>Agriculture and Forestry Resources</th>
<th>Air Quality</th>
<th>Biological Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultural Resources/Tribal Cultural Resources</td>
<td>Geology and Soils</td>
<td>Greenhouse Gases</td>
</tr>
<tr>
<td>Hazards and Hazardous Materials</td>
<td>Hydrology and Water Quality</td>
<td>Land Use and Planning</td>
</tr>
<tr>
<td>Mineral Resources</td>
<td>Noise</td>
<td>Population and Housing</td>
</tr>
<tr>
<td>Public Services</td>
<td>Recreation</td>
<td>Transportation/Traffic</td>
</tr>
<tr>
<td>Utilities and Service Systems</td>
<td>Mandatory Findings of Significance</td>
<td></td>
</tr>
</tbody>
</table>

City of San Leandro
915 Antonio Street and 844 Alvarado Street Project
February 2019
CEQA Infill Checklist

2.0-5
DETERMINATION: (To be completed by the lead agency)

On the basis of this initial evaluation:

- I find that the proposed infill project WOULD NOT have any significant effects on the environment that either have not already been analyzed in a prior EIR or that are more significant than previously analyzed, or that uniformly applicable development policies would not substantially mitigate. Pursuant to Public Resources Code Section 21094.5, CEQA does not apply to such effects. A Notice of Determination (Section 15094) will be filed.

- I find that the proposed infill project will have effects that either have not been analyzed in a prior EIR, or are more significant than described in the prior EIR, and that no uniformly applicable development policies would substantially mitigate such effects. With respect to those effects that are subject to CEQA, I find that such effects WOULD NOT be significant and that a NEGATIVE DECLARATION, or if the project is a Transit Priority Project a SUSTAINABLE COMMUNITIES ENVIRONMENTAL ASSESSMENT, will be prepared.

- I find that the proposed infill project will have effects that either have not been analyzed in a prior EIR or are more significant than described in the prior EIR, and that no uniformly applicable development policies would substantially mitigate such effects. I find that although those effects could be significant, there will not be a significant effect in this case because revisions in the infill project have been made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION, or if the project is a Transit Priority Project a SUSTAINABLE COMMUNITIES ENVIRONMENTAL ASSESSMENT, will be prepared.

- I find that the proposed infill project would have effects that either have not been analyzed in a prior EIR or are more significant than described in the prior EIR, and that no uniformly applicable development policies would substantially mitigate such effects. I find that those effects WOULD be significant, and an infill ENVIRONMENTAL IMPACT REPORT is required to analyze those effects that are subject to CEQA.

Signature

A. Mepani

Date

3-7-19

Printed Name

Anjana Mepani

City of San Leandro

Lead Agency

Title

Senior Planner
3.0 PROJECT DESCRIPTION
3.0 PROJECT DESCRIPTION

3.1 PROJECT LOCATION

The project area includes the 915 Antonio Street site and the 844 Alvarado Street site. The 915 Antonio Street site is located on the west side of Alvarado Street and is bounded by Lola Street to the north, an auto dealership to the south, and railroad tracks to the west. An Alameda County Fire Department training facility is adjacent to the site on the north side of Lola Street. Farther north are San Leandro Creek and the Cherrywood residential neighborhood of single-family homes. Adjacent to the 915 Antonio Street site to the south is the F. H. Dailey Chevrolet dealership and farther south is the intersection of Alvarado Street and Davis Street (State Route 112). Across Alvarado Street from the auto dealership are a parking lot and office complex operated by Wells Fargo. On the south side of Davis Street are additional office uses and the San Leandro Bay Area Rapid Transit (BART) station. The 844 Alvarado Street site is on the east side of Alvarado Street, bounded to the north by single-family residences and to the south by a chapel/social hall—the Imandade do Divino Espirito Santo.

The 915 Antonio Street site consists of six parcels and the right-of-way for an unbuilt street, totaling 5.73 acres, in San Leandro. The project’s Assessor’s Parcel Numbers (APNs) are 075-0057-012-1, 075-0057-001, 075-0155-015, 075-0155-011, 075-0155-012, and 075-0155-017 and the Antonio Street right-of-way (no APN). The 844 Alvarado Street site is a 12,733-square-foot parcel (APN 075-0054-003).

The project area is east of Interstate 880 and approximately 1,250 feet south of San Leandro’s city limits bordering Oakland (see Figure 3.0-1, Regional Vicinity). The project area is within 0.50 miles of the San Leandro BART station (see Figure 3.0-2, Project Location).

3.2 EXISTING AND SURROUNDING LAND USES

The primarily vacant 915 Antonio Street site contains buildings in the northeast corner of the property: a warehouse at 829 Alvarado Street and a community music group use, Filarmónica Artística Amadora de San Leandro (FAASL), at 857 Alvarado Street, which would be relocated to a new building at the 844 Alvarado Street site as part of the project. The remainder of the 915 Antonio Street site is undeveloped and overgrown, with some remnants of prior structures that have since been demolished. As noted above, the project site includes the right-of-way for the unbuilt portion of Antonio Street. The site is generally flat and is surrounded by development, as described above. The 844 Alvarado Street site is also vacant, generally flat, and surrounded by development.

According to the San Leandro 2035 General Plan (2016b), the project area is designated Transit-Oriented Development Mixed Use (see Figure 3.0-3, General Plan Land Use). As shown on Figure 3.0-4, Zoning Districts, the project area is zoned Downtown Area 4, Special Review Overlay District (DA-4S).

PROJECT AREA HISTORY

Historical information from 1898 appears to show the 915 Antonio Street site as developed with single-family residences at that time. Manufacturing uses have existed in the project vicinity since the late 1800s. In approximately 1925, the Caterpillar Tractor Company began manufacturing and assembling heavy equipment on a property including the project site and the site of the adjoining auto dealership. Caterpillar’s operations on the site occurred from approximately 1925 to 1980, when operations were moved to another location in San Leandro. The vacant Caterpillar structures were demolished between 1981 and 1984, with the exception of a single building at 854 Antonio Street.
3.0 PROJECT DESCRIPTION

The 844 Alvarado Street site was used for an electronic equipment business and then a rug/carpet business in the 1960s before being used by Caterpillar as a storage area during site-remediation efforts in the 1970s. The property was likely vacant from the 1980s to present. Until recently, the site was used as overflow parking by the F. H. Dailey auto dealership.

3.3 PROJECT OVERVIEW

The project would demolish the existing buildings on the 915 Antonio Street site and construct a 687-unit residential structure. Figure 3.0-5, Ground Floor Plan - 915 Antonio Street Site, shows the project site plan, and Figures 3.0-6, 3.0-7, and 3.0-8, Project Elevations, show views of the 915 Antonio Street project from varying vantage points.

The project would also construct a 4,326-square-foot music conservatory building on the 844 Alvarado Street site as a replacement facility for FAASL. Figure 3.0-9, Site Plan - 844 Alvarado Street Site, shows the project site plan, and Figure 3.0-10, Project Elevation - 844 Alvarado Street Site, shows views of the proposed FAASL building.

PROJECT ELEMENTS

915 Antonio Street Site

The project would construct a 931,989-square-foot residential development containing 687 market-rate rental apartment units. The project design includes two buildings. The north building would be six stories tall with a building height of approximately 67 feet 9 inches, and the south building would be five stories tall with a building height of approximately 57 feet 7 inches. Both residential buildings would be wood-framed and would be built over a two-story, cast-in-place parking structure containing 882 spaces, with one level below grade. Additionally, 10 parking spaces will be provided onsite and those parking spaces will be accessed from Lola Street.

The project would include approximately 19 percent studio apartments, 16 percent Junior one-bedroom apartments, 27 percent one-bedroom apartments, 30 percent two-bedroom apartments, and 7 percent three-bedroom apartments with an average unit size of 730 square feet, as summarized in Table 3.0-1. Each unit would have a full kitchen, including a refrigerator, dishwasher, range/oven, and washer and dryer, and approximately 30 percent of the units would include private balconies. Twenty of the units would be ground-floor apartments with stoops facing Alvarado and Lola streets, which would help establish the residential character of the site at the ground level.

<table>
<thead>
<tr>
<th>Unit Type</th>
<th>Unit Area (square feet)</th>
<th>Unit Count (percentage of total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studio</td>
<td>440</td>
<td>129 (19%)</td>
</tr>
<tr>
<td>Junior 1 Bedroom</td>
<td>607</td>
<td>111 (16%)</td>
</tr>
<tr>
<td>1 Bedroom</td>
<td>616–793</td>
<td>191 (28%)</td>
</tr>
<tr>
<td>2 Bedrooms</td>
<td>734–1,074</td>
<td>211 (30%)</td>
</tr>
<tr>
<td>3 Bedrooms</td>
<td>1,055–1,365</td>
<td>45 (7%)</td>
</tr>
<tr>
<td>Total Residential Square Footage</td>
<td>605,405</td>
<td>687 (100%)</td>
</tr>
<tr>
<td>Average Unit Size</td>
<td>731</td>
<td></td>
</tr>
</tbody>
</table>

Source: BDE Architecture 2018
Accessory uses would include 26,382 square feet of amenity spaces, on-site management offices, and a 550-square-foot ground-floor café space. Resident building amenities would include furnished common tenant spaces such as a communal cooking and dining area, fitness areas, shared working lounge, rooftop gardens, storage rooms, bike lockers, common outdoor courtyards (including barbecue areas), lounge areas, play areas, and a pool with spa. Additional publicly accessible amenities would include a parklet facing Lola Street and improved landscaping and hardscaping along Alvarado Street.

The proposed density would be 120 units per acre and the floor area ratio (FAR) would be 3.6. The lot coverage would be 85 percent. The project would be in conformance with the zoning and General Plan regulations applicable to the site, as summarized in Table 3.0-2.

Table 3.0-2
ZONING AND GENERAL PLAN CONSISTENCY

<table>
<thead>
<tr>
<th></th>
<th>Existing Regulations</th>
<th>Proposed Project</th>
<th>Consistent</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Plan Designation</td>
<td>Transit-Oriented Development Mixed Use</td>
<td>Transit-Oriented Development Mixed Use</td>
<td>Yes</td>
</tr>
<tr>
<td>Zoning</td>
<td>DA-4S</td>
<td>DA-4S</td>
<td>Yes</td>
</tr>
<tr>
<td>Lot Coverage</td>
<td>100% coverage permitted</td>
<td>85%</td>
<td>Yes</td>
</tr>
<tr>
<td>Open Space</td>
<td>None required</td>
<td>84,065 SF</td>
<td>Yes</td>
</tr>
<tr>
<td>Height</td>
<td>75 feet maximum, subject to Conditional Use Permit</td>
<td>67 feet, 9 inches</td>
<td>Yes</td>
</tr>
<tr>
<td>Density</td>
<td>Maximum 100 units per acre on parcels of at least 10,000 SF; density bonus of 20% if average unit size is less than 750 SF</td>
<td>120 dwelling units per acre; average unit size 731 SF</td>
<td>Yes</td>
</tr>
<tr>
<td>Floor Area Ratio</td>
<td>None</td>
<td>3.6</td>
<td>Yes</td>
</tr>
<tr>
<td>Parking</td>
<td>Minimum 1 space per unit = 687 spaces</td>
<td>892 spaces</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Source: BDE Architecture 2018

Note: SF = square feet

The building design would incorporate at least three colors and three or more finish materials, including stucco, siding, glass, and concrete.

844 Alvarado Street Site

The project would construct a new 4,326-square-foot, single-story music conservatory building for FAASL on the site. The project would be constructed with a combination of concrete masonry unit (CMU) block and light-gauge steel framing. The exterior cladding of the building would be a combination of stucco and cement board siding punctuated with aluminum storefront glazing.

The building would include a 2,230-square-foot music conservatory, a 402-square-foot office and meeting room, a 522-square-foot kitchen, a 350-square-foot student lounge, and a 417-square-foot storage room. Supplemental areas, including restrooms, closets, and circulation, would total 405 square feet. All spaces within the project would be ADA-accessible.

The replacement FAASL facility would be used in the same way as the current facility. FAASL provides music lessons to children and adults free of charge. During classroom hours, FAASL currently has a minimum of two staff members facilitating music instruction for beginner,
intermediate, and advanced classes. Members would also use the facility to practice music in small private groups, host member meetings, host fundraising events, maintain musical instruments, and provide general facility cleaning and upkeep.

PROJECT SITE CIRCULATION

915 Antonio Street Site

There would be multiple pedestrian access points to the 915 Antonio Street development, with the main lobby areas for each building located near the intersection of Alvarado and Antonio streets. Vehicular access to the project’s parking garage would be via two curb cuts on Alvarado Street and one curb cut on Lola Street, as shown on Figure 3.0-5. The primary entrance would be aligned with Antonio Street, providing access to a lane that would connect to the north and south building parking areas. The north building garage would also have access from Lola Street, and the south building garage would also have access from the curb cut on Alvarado Street, bordering the adjacent auto dealership. Trash pickup and building loading areas would be accessed along the western edge of the building adjacent to the railroad tracks. Emergency vehicle access would be via 26-foot-wide access lanes throughout the site, including a lane extending from the intersection of Alvarado and Antonio streets, and lanes along the southern, western, and northern boundaries of the site.

844 Alvarado Street Site

The FAAASL facility would include 15 surface parking spaces at the rear of the site, which would be accessed from a driveway extending from a new curb cut on Alvarado Street. Entrances to the building would be provided from Alvarado Street and from the parking lot at the rear of the site. A five-position bicycle rack would also be provided along Alvarado Street. Similar to operations at the existing FAAASL facility, students would typically arrive by public transit, carpool, or parent drop-off.

OPEN SPACE AND LANDSCAPING

915 Antonio Street Site

The 915 Antonio Street development would provide 74,773 square feet of open space, including common space for residents, internal lanes accessible to emergency vehicles, and private stoops and balconies. The north building courtyards would be 25,131 square feet and would include a lap pool and spa, and the south building courtyard would be 15,574 square feet. Both courtyards would be landscaped and include lounge, play, and barbecue areas. The north and south buildings would also have rooftop outdoor terrace areas of 2,029 square feet and 1,383 square feet, respectively. On the west side of the complex, there would be a playground area and dog park, and on the north side would be a parklet facing Lola Street. The internal access lanes would include accent paving and raised planters. These features are shown on Figure 3.0-11, Landscape Plan.

844 Alvarado Street Site

A 441-square-foot landscaped area would be provided at the front of the facility facing Alvarado Street.
LIGHTING

915 Antonio Street Site

The project would include installation of new streetlights along Alvarado Street and pedestrian pole lights and bollard lights throughout the internal access lanes. The interior courtyards and walkways would also include wall lights and string lights. Lighting would comply with City of San Leandro regulations.

844 Alvarado Street Site

Building lighting would be provided along Alvarado Street and in the rear parking lot, consistent with City of San Leandro regulations.

UTILITIES

Utility providers would be the same for both sites. The Pacific Gas and Electric Company (PG&E) would provide electric and natural gas services. Alameda County Industries (ACI) would provide refuse services. The City of San Leandro would be responsible for wastewater collection, treatment, and disposal. The East Bay Municipal Utility District (EBMUD) would supply water to the site. The storm drain system for the project site would be maintained by the City of San Leandro Public Works Department. Police services would be provided by the San Leandro Police Department, and fire protection would be provided by the Alameda County Fire Department.

STORMWATER

915 Antonio Street Site

The stormwater requirements checklist for the 915 Antonio Street development is included as Appendix SWP and the Storm Drainage Report is included as Appendix SDR. Currently, the site has 56,304 square feet of impervious surfaces. The project would create 36,376 square feet of impervious surfaces (roofs and paving) and result in 52,662 square feet of pervious surfaces (landscaping) on the site. As shown on Figure 3.0-12, Stormwater Control Plan – 915 Antonio Street Site, the project site has been divided into 12 drainage management areas for stormwater control, with seven bioretention areas. The landscaped courtyards and landscaping at grade would also serve to meet hydromodification (C3) bioretention, filtration, and treatment requirements.

844 Alvarado Street Site

Currently, the paved site is developed with 7,604 square feet of impervious area. The project would replace 7,604 square feet of impervious area, create 2,320 square feet of imperious area, and result in 2,810 square feet of pervious area one construction is complete. The stormwater system would convey runoff from impervious surfaces to bioretention areas for treatment of the water. The bioretention locations are shown on Figure 3.0-13, Stormwater Control Plan – 844 Alvarado Street Site.

CONSTRUCTION

It is expected that the project, the residential development and FAASL facility will be built separately and in multiple phases with a duration of 32 months, estimated to begin in 2019 and ending in 2022. Consistent with the City’s Noise Ordinance, construction would generally occur Monday through Friday between the hours of 7:00 a.m. and 7:00 p.m. and on Saturdays and Sundays between 8:00 a.m. and 7:00 p.m.
3.0 PROJECT DESCRIPTION

Construction activities would consist of demolishing the existing buildings, preparing the site (including grading), removing existing paved areas, and constructing new buildings. Construction would require excavation and off-hauling of materials totaling approximately 90,000 cubic yards. Construction would also involve the use of heavy equipment such as bulldozers, scrapers, backhoes, excavators, loaders, compactors, rollers, and a paving machine.

Construction of the replacement FAASL facility would occur within the time frame for the development of the 915 Antonio Street site.

3.4 RELATIONSHIP OF PROJECT TO OTHER PLANS AND DOCUMENTS

CITY OF SAN LEANDRO GENERAL PLAN

The project would be located entirely in San Leandro. The City’s 2035 General Plan is the fundamental document governing land use development. The General Plan includes numerous goals and policies pertaining to land use; transportation; economic development; open space, conservation, and parks; environmental hazards; historic preservation and community design; community services and facilities; and housing. The project would be required to abide by all applicable goals and policies in the adopted General Plan (San Leandro 2016a).

2035 SAN LEANDRO GENERAL PLAN EIR

The 2035 General Plan (San Leandro 2016a) incorporates and implements the TOD Strategy, and the EIR contains an evaluation of environmental impacts, references uniformly applicable development policies, and relies on those policies (including a requirement to update the TOD Strategy) and mitigation measures to reduce environmental effects. The City’s General Plan Update EIR (San Leandro 2016b) was certified on September 19, 2016. This CEQA Infill Checklist tiers off the 2016 General Plan Update EIR (San Leandro 2016b) to determine whether the project’s impacts were analyzed in a prior EIR or would be substantially mitigated by the City’s uniformly applicable development policies. This Infill Checklist also incorporates information from the Downtown TOD EIR (San Leandro 2007b), which also qualifies as a prior EIR and is described below. Pursuant to Public Resources Code Section 21094.5, impacts that are addressed in a prior EIR or uniformly applicable development policies are exempt under the California Environmental Quality Act (CEQA) and do not require further environmental analysis.

DOWNTOWN SAN LEANDRO TRANSIT-ORIENTED DEVELOPMENT STRATEGY

The project would be developed in compliance with the City’s Downtown San Leandro Transit-Oriented Development Strategy (San Leandro 2007a). The strategy was adopted in 2007 to establish a land use framework, a comprehensive circulation system, design and development guidelines, and a series of implementation actions to guide new development in a 502-acre area of downtown San Leandro. The strategy’s two guiding goals are to increase transit ridership and to enhance downtown San Leandro as a vibrant, pedestrian-oriented destination with a strong sense of place and civic identity (San Leandro 2007a). The project site is identified as part of Special Policy Area 5 in the strategy.

DOWNTOWN SAN LEANDRO TRANSIT-ORIENTED DEVELOPMENT STRATEGY EIR

The City of San Leandro certified the Downtown San Leandro Transit-Oriented Development Strategy Final Environmental Impact Report (EIR) on June 5, 2007 (San Leandro 2007b). The EIR is a program-level document, as defined by CEQA Guidelines Section 15168. Under the program EIR
approach, future projects or phases may require additional, project-specific environmental analysis. This CEQA Infill Checklist incorporates information and uniformly applicable development policies from the Downtown San Leandro Transit-Oriented Development Strategy and EIR.

CITY OF SAN LEANDRO MUNICIPAL CODE

The project site is zoned Downtown Area 4, Special Review Overlay District (DA-4S). Pursuant to the San Leandro Zoning Code, the Zoning Enforcement Official must review development plans in Downtown Area zones for general consistency with the Design Guidelines for the Downtown San Leandro Transit-Oriented Development Strategy that relate to design features. In addition, the Special Review Overlay provides for discretionary review of development proposals in certain areas to ensure an orderly transition from prior uses to new activities that are compatible with adjacent uses and will prevent development that may be detrimental to the community.

3.5 PROJECT APPROVALS

As the lead agency, the City of San Leandro has the ultimate authority for project approval or denial. The project would require the following discretionary approvals by the City for actions proposed as part of the project:

- Determine that no further review is required for the project under CEQA
- Approve Conditional Use Permit pursuant to the Special Review Overlay District
- Approve Site Plan Review
This page intentionally left blank.
This page intentionally left blank.
This page intentionally left blank.
FIGURE 3.0-3

General Plan Land Use

Legend

- Project Area
- San Leandro City Limit
- Residential
 - RG - Garden Density Residential
 - RL - Low Density Residential
 - RLM - Low-Medium Density Residential
 - RM - Medium Density Residential
 - RMH - Medium-High Density Residential
 - RH - High Density Residential
- Commercial
 - CN - Neighborhood Commercial
 - CG - General Commercial
- Industrial
 - MUD - Downtown Mixed Use
 - MUC - Corridor Mixed Use
 - MUTOD - Transit-Oriented Development Mixed Use
 - BTOD - Bayfair Transit-Oriented Development
- Public/Open Space
 - PI - Public/Institutional
 - PR - Parks and Recreation
 - RC - Resource Conservation

Source: ESRI Imagery Service (2018), City of San Leandro, 2018
This page intentionally left blank.
This page intentionally left blank.
3.0 PROJECT DESCRIPTION

This page intentionally left blank.
This page intentionally left blank.
This page intentionally left blank.
FIGURE 3.0-8
Source: BDE Architecture, Maximus Alvarado & Antonio LLC; 2018

Not To Scale

Project Elevations - 915 Antonio Street Site
This page intentionally left blank.
FIGURE 3.0-10
Project Elevation – 844 Alvarado Street Site

Source: Acuff Architecture, 2018
This page intentionally left blank.
This page intentionally left blank.
Stormwater Control Plan – 844 Alvarado Street Site

FIGURE 3.0-13

Source: Kier & Wright Civil Engineers & Surveyors, Inc.; 2018
This page intentionally left blank.
4.0 INFILL CHECKLIST
4.0 INFILL CHECKLIST

4.1 AGRICULTURE AND FORESTRY RESOURCES. In determining whether impacts to agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land Evaluation and Site Assessment Model (1997), prepared by the California Department of Conservation as an optional model to use in assessing impacts on agriculture and farmland. In determining whether impacts on forest resources, including timberland, are significant environmental effects, lead agencies may refer to information compiled by the California Department of Forestry and Fire Protection regarding the state’s inventory of forest land, including the Forest and Range Assessment Project and the Forest Legacy Assessment Project, and forest carbon measurement methodology provided in the Forest Protocols adopted by the California Air Resources Board. Would the project:

a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to nonagricultural use? ☑ ☐ ☒ ☒ ☐

b) Conflict with existing zoning for agricultural use, or a Williamson Act contract? ☐ ☐ ☒ ☒ ☐

c) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland to nonagricultural use? ☐ ☐ ☒ ☒ ☐

d) Conflict with existing zoning for, or cause rezoning of, forestland (as defined in Public Resources Code Section 12220(g), timberland (as defined in Public Resources Code Section 4526), or timberland zoned Timberland Production (as defined in Public Resources Code Section 51104(g))? ☐ ☐ ☒ ☒ ☐

e) Result in the loss of forestland or conversion of forestland to non-forest use? ☐ ☐ ☒ ☒ ☐

ENVIRONMENTAL CHECKLIST AND DISCUSSION

Criteria a, b, c)

Analysis in the 2035 General Plan EIR

As stated in the 2035 General Plan EIR (Section 4, page 4-1)(San Leandro 2016b), because of the past and current uses, there would be no environmental impacts associated with agricultural and forestry resources. Similarly, based on the TOD Strategy Initial Study and EIR scoping meeting conducted on May 25, 2006, the City determined that the TOD Strategy would have no impact on agricultural resources and this resource was not analyzed further in the EIR.
New Information and Specific Effects of the Project

The project area consists of infill sites that have not recently been used as farmland. The area is zoned and designated for transit-oriented mixed-use development. As described in Section 3.0, Project Description, manufacturing uses have existed on the 915 Antonio Street site since the late 1800s, and the Caterpillar Tractor Company manufactured and assembled heavy equipment there from approximately 1925 to 1980. The 844 Alvarado Street site was also previously developed with commercial uses.

According to the Farmland Mapping and Monitoring Program (FMMP) from the California Department of Conservation (2016), the project sites and the surrounding area are designated as Urban and Built-Up Land and Other Land and are not under a Williamson Act contract (DOC 2015, 2016). Therefore, the project would not involve any changes in the existing environment that could result in conversion of farmland to nonagricultural use. There would be no impact and this resource was adequately addressed in the prior EIR.

Criteria d, e)

Analysis in the 2035 General Plan EIR

As stated in the 2035 General Plan EIR (Section 4, page 4-1) (San Leandro 2016b), because of the past and current uses, there would be no environmental impacts associated with forestry resources.

New Information and Specific Effects of the Project

The project area has already been developed with urban uses and contains no forestland or timberland. Therefore, the project would have no impact on forestland or timberland and this resource was adequately addressed in the prior EIR.
4.0 ENVIRONMENTAL CHECKLIST

<table>
<thead>
<tr>
<th>Significant Impact</th>
<th>Less Than Significant or Less Than Significant with Mitigation Incorporated</th>
<th>No Impact</th>
<th>Analyzed in the Prior EIR</th>
<th>Substantially Mitigated by Uniformly Applicable Development Policies</th>
</tr>
</thead>
</table>

4.2 AIR QUALITY

Where available, the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the following determinations. Would the project:

- **a)** Conflict with or obstruct implementation of the applicable air quality plan?
- **b)** Violate any air quality standard or contribute substantially to an existing or projected air quality violation?
- **c)** Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is in nonattainment under an applicable federal or state ambient air quality standard (including releasing emissions that exceed quantitative thresholds for ozone precursors)?
- **d)** Expose sensitive receptors to substantial pollutant concentrations?
- **e)** Create objectionable odors affecting a substantial number of people?

| | ☐ | ☐ | ☐ | ☒ | ☐ |

Michael Baker International (2018a) prepared an air quality and greenhouse gas assessment for the project, which is summarized throughout this subsection and included as Appendix AIR.

SETTING

Table 4.2-1 shows the area’s current federal and state ambient air quality attainment status. The nearest air quality monitoring site to the project is at 9925 International Boulevard in Oakland, approximately 1.2 miles north of the project area. Ambient air quality in the region can be inferred from ambient air quality measurements conducted at air quality monitoring stations. Existing levels of ambient air quality and historical trends and projections in the region are documented by measurements made by the air districts and the California Air Resources Board (CARB). **Table 4.2-2** shows historical occurrences of ozone pollutant levels exceeding state and federal air quality standards for the three-year period from 2014 through 2016. There are no monitoring sites in Alameda County with data for coarse particulate matter (PM$_{10}$) concentrations.
<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>California Standards</th>
<th>National Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Concentration</td>
<td>Attainment Status</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ozone (O₃)</td>
<td>8 Hours</td>
<td>0.070 ppm (137 µg/m³)</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>1 Hour</td>
<td>0.09 ppm (180 µg/m³)</td>
<td>N</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>8 Hours</td>
<td>9.0 ppm (10 mg/m³)</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>1 Hour</td>
<td>20 ppm (23 mg/m³)</td>
<td>A</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO₂)</td>
<td>1 Hour</td>
<td>0.18 ppm (339 µg/m³)</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Annual Arithmetic Mean</td>
<td>0.030 ppm (57 µg/m³)</td>
<td>A</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO₂)</td>
<td>24 Hours</td>
<td>0.04 ppm (105 µg/m³)</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>1 Hour</td>
<td>0.25 ppm (665 µg/m³)</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Annual Arithmetic Mean</td>
<td>0.030 ppm (80 µg/m³)</td>
<td>—</td>
</tr>
<tr>
<td>Particulate Matter (PM₁₀)</td>
<td>Annual Arithmetic Mean</td>
<td>20 µg/m³</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>24 Hours</td>
<td>50 µg/m³</td>
<td>N</td>
</tr>
<tr>
<td>Particulate Matter – Fine (PM₂.₅)</td>
<td>Annual Arithmetic Mean</td>
<td>12 µg/m³</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>24 Hours</td>
<td>35 µg/m³</td>
<td>N</td>
</tr>
<tr>
<td>Sulfates</td>
<td>24 Hours</td>
<td>25 µg/m³</td>
<td>A</td>
</tr>
<tr>
<td>Lead</td>
<td>30-Day Average</td>
<td>1.5 µg/m³</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Calendar Quarter</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Rolling 3-Month Average</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>1 Hour</td>
<td>0.03 ppm (42 µg/m³)</td>
<td>U</td>
</tr>
<tr>
<td>Vinyl Chloride (chloroethene)</td>
<td>24 Hours</td>
<td>0.01 ppm (26 µg/m³)</td>
<td>No information available</td>
</tr>
<tr>
<td>Visibility-Reducing Particles</td>
<td>8 Hours (10:00 to 18:00 PST)</td>
<td>—</td>
<td>U</td>
</tr>
</tbody>
</table>

Source: BAAQMD 2017a

Notes: A = attainment; N = nonattainment; U = unclassified; mg/m³ = milligrams per cubic meter; ppm = parts per million; ppb = parts per billion; µg/m³ = micrograms per cubic meter
TABLE 4.2-2

SUMMARY OF AMBIENT AIR QUALITY DATA

<table>
<thead>
<tr>
<th>Pollutant Standards</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (Oakland 9925 International Boulevard Station)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum 1-hour concentration (ppm) state</td>
<td>0.083</td>
<td>0.094</td>
<td>0.082</td>
</tr>
<tr>
<td>Number of days above state 1-hour standard</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maximum 8-hour concentration (ppm) state</td>
<td>0.069</td>
<td>0.074</td>
<td>0.058</td>
</tr>
<tr>
<td>Number of days above state 8-hour standard (0.070 ppm)</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Maximum 8-hour concentration (ppm) federal</td>
<td>0.068</td>
<td>0.074</td>
<td>0.057</td>
</tr>
<tr>
<td>Number of days above federal 8-hour 2015 standard (0.070 ppm)</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Fine Particulate Matter (PM$_{2.5}$) (Oakland 9925 International Boulevard Station)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum 24-hour concentration (μg/m3) federal</td>
<td>37.6</td>
<td>44.7</td>
<td>15.5</td>
</tr>
<tr>
<td>Number of days above federal standard</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Source: CARB 2018

Notes: μg/m3 = micrograms per cubic meter; ppm = parts per million; * = No data is currently available from CARB to determine the value.

Sensitive Receptors

Some land uses are considered more sensitive to air pollution than others because of the types of population groups or activities involved. Sensitive population groups include children, the elderly, the acutely ill, and the chronically ill, especially those with cardiorespiratory diseases.

Residential areas are considered sensitive receptors to air pollution because residents (including children and the elderly) tend to be at home for extended periods of time, resulting in sustained exposure to any pollutants present. Recreational land uses are considered moderately sensitive to air pollution.

The closest existing sensitive receptors are single-family residential buildings adjacent to the project area to the north and west. The closest school is St. Leander School, approximately 1,600 feet to the southeast.

ENVIRONMENTAL CHECKLIST AND DISCUSSION

Criterion a)

Analysis in the 2035 General Plan EIR

Potential impacts on implementation of air quality plans was analyzed in the 2035 General Plan EIR, (Section 4.2.5, pages 4.2-22 through 4.2-53) and the City determined that by complying with existing regulations, plans (e.g., 2010 Bay Area Clean Air Plan), and development policies, the impacts of projects consistent with the plan would be less than significant. Relevant policies contained in the 2035 General Plan include Policy EH-3.4, Design, Construction, and Operation, which requires that new developments be designed to reduce air quality problems.
New Information and Specific Effects of the Project

As part of its enforcement responsibilities, the US Environmental Protection Agency (EPA) requires each state with nonattainment areas to prepare and submit a State Implementation Plan that demonstrates the means to attain the federal standards. The SIP must integrate federal, state, and local plan components and regulations to identify specific measures to reduce pollution in nonattainment areas, using a combination of performance standards and market-based programs. Similarly, under state law, the California Clean Air Act requires an air quality attainment plan to be prepared for areas designated as nonattainment with regard to the federal and state ambient air quality standards. Air quality attainment plans outline emissions limits and control measures to achieve and maintain these standards by the earliest practical date.

The BAAQMD (2017b) Bay Area 2017 Clean Air Plan is the most recent air quality planning document covering Alameda County. Air quality attainment plans are a compilation of new and previously submitted plans, programs (such as monitoring, modeling, permitting, etc.), district rules, state regulations, and federal controls describing how the state will attain ambient air quality standards for ozone and particulate matter. State law makes CARB the lead agency for all purposes related to the air quality attainment plan. Local air districts prepare air quality attainment plans and submit them to CARB for review and approval.

Per the BAAQMD (2017a), a project would not conflict with or obstruct implementation of the Bay Area 2017 Clean Air Plan if:

- The project supports the primary goals of the Clean Air Plan.
- The project conforms to applicable control measures from the plan and does not disrupt or hinder the implementation of any Clean Air Plan control measures.

The primary goals of the Clean Air Plan are compliance with the state (California) and national ambient air quality standards. As discussed below for criterion b, the project is below all the thresholds of significance for criteria air pollutants as established by the BAAQMD. The thresholds of significance provide lead agencies and project applicants with a conservative indication of whether the project could result in potentially significant air quality impacts. Therefore, the project would support the primary goals of the Clean Air Plan.

BAAQMD air quality planning control measures are developed, in part, based on the emissions inventories contained in the Clean Air Plan, which are derived from projected population growth and vehicle miles traveled (VMT) for the region. These inventories are largely based on the predicted growth identified in regional and community general plans, including associated development projects. Projects that result in an increase in population or employment growth beyond that identified in regional or community plans could result in increases in VMT and subsequently increase mobile source emissions. These increases would not have been accounted for in the BAAQMD’s air quality plans, making those projects inconsistent with the Clean Air Plan.

The project would increase San Leandro’s population by approximately 1,965 residents.\(^1\) The project would be consistent with the 2035 General Plan land use designation of Transit-Oriented Development Mixed Use and with the Downtown San Leandro Transit-Oriented Development Strategy. The projected population increase would be within the growth projections assumed in

\(^1\) This project population estimate is based on the CalEEMod default of 2.86 residents per dwelling unit for mid-rise apartments in Alameda County (CAPCOA 2017).
the 2035 General Plan, and the project would not hinder implementation of the Clean Air Plan. Therefore, the project would not conflict with or obstruct implementation of the applicable air quality plan. The effect of the project would not be more significant than described in the prior EIR.

Criterion b)

Analysis in the 2035 General Plan EIR

Potential impacts on air quality standards were analyzed in the 2035 General Plan EIR (Section 4.2.5, pages 4.2-22 through 53), which determined that despite implementation of General Plan policies (e.g., Policy T-1.3, Mitigation of Development Impacts), criteria air pollutant emissions would cause a substantial net increase in emissions that exceeds the BAAQMD regional significance thresholds. Therefore, the 2035 General Plan EIR required the following mitigation:

Mitigation Measure AQ-2A: Prior to issuance of construction permits, development project applicants that are subject to CEQA and exceed the screening sizes in the Bay Area Air Quality Management District’s (BAAQMD) CEQA Guidelines shall prepare and submit to the City of San Leandro a technical assessment evaluating potential air quality impacts related to the project’s operation phase. The evaluation shall be prepared in conformance with the BAAQMD methodology in assessing air quality impacts. If operation-related criteria air pollutants are determined to have the potential to exceed the BAAQMD thresholds of significance, as identified in BAAQMD’s CEQA Guidelines, the City of San Leandro Community Development Department shall require that applicants for new development projects incorporate mitigation measures to reduce air pollutant emissions during operation activities.

The 2035 General Plan EIR identified this impact as significant and unavoidable because the analysis considered the total criteria air pollutant emissions from operation of all future development projects under the 2035 General Plan. Given the scope of the General Plan, the application of project-level thresholds would be expected to result in this significant and unavoidable impact. However, the 2035 General Plan EIR acknowledges that the impacts of future individual projects that are below BAAQMD screening criteria or meet applicable thresholds of significance can be determined to be less than significant. As shown by the project-specific analysis below, compliance with existing regulations and policies would reduce project impacts to less than significant.

New Information and Specific Effects of the Project

This section evaluates both construction and operational emissions. The BAAQMD has developed project-level thresholds of significance to provide a conservative indication of whether a project could result in potentially significant air quality impacts. To meet the project-level threshold of significance for construction-related criteria air pollutant and precursor impacts, the project must emit no more than 54 pounds per day (lbs/day) of reactive organic gases (ROG), nitrogen oxides (NOx), and/or exhaust-related fine particulate matter (PM$_{2.5}$) and no more than 82 lbs/day of exhaust-related PM$_{10}$. Concerning fugitive dust-related PM$_{2.5}$ and PM$_{10}$ emissions generated during construction, for all projects, the BAAQMD recommends the implementation of all Basic Construction Mitigation Measures (see Table 4.2-4), whether or not construction-related emissions exceed applicable thresholds of significance. For operational-related criteria air pollutant and precursor impacts, the project must emit no more than 54 lbs/day of ROG, NOx, and/or PM$_{2.5}$ and no more than 82 lbs/day of PM$_{10}$ to be considered less than significant.
Construction-Generated Emissions

The project would generate short-term emissions from construction activities such as site grading, asphalt paving, building construction, and architectural coatings (e.g., painting). Common construction emissions include fugitive dust from soil disturbance, fuel combustion from mobile heavy-duty diesel and gasoline-powered equipment, portable auxiliary equipment, and worker commute trips. During construction, fugitive dust, the dominant source of PM\textsubscript{10} and PM\textsubscript{2.5} emissions, would be generated when wheels or blades disturb surface materials. Uncontrolled dust from construction can become a nuisance and potential health hazard to those living and working nearby. Demolition can also generate PM\textsubscript{10} and PM\textsubscript{2.5} emissions. Off-road construction equipment is often diesel-powered and can be a substantial source of NO\textsubscript{x} emissions, in addition to PM\textsubscript{10} and PM\textsubscript{2.5} emissions. Worker commute trips and architectural coatings are dominant sources of ROG emissions.

Predicted maximum daily unmitigated construction-generated emissions for the project are summarized in Table 4.2-3. Some construction phases may overlap. Architectural coating activities are assumed to occur throughout the building construction period as components are completed. Project construction is assumed to take a maximum of 32 months and commence in April 2019. As shown in Table 4.2-3, construction-generated criteria pollutant emissions are not predicted to exceed their respective BAAQMD significance thresholds.

<table>
<thead>
<tr>
<th>Construction Activities</th>
<th>ROG</th>
<th>NO\textsubscript{x}</th>
<th>Exhaust PM\textsubscript{10}</th>
<th>Exhaust PM\textsubscript{2.5}</th>
<th>Fugitive Dust PM\textsubscript{10}</th>
<th>Fugitive Dust PM\textsubscript{2.5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>844 Alvarado Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019 maximum daily emissions</td>
<td>9.8</td>
<td>16.1</td>
<td>0.6</td>
<td>0.6</td>
<td>1.6</td>
<td>0.6</td>
</tr>
<tr>
<td>915 Antonio Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019 maximum daily emissions</td>
<td>4.6</td>
<td>52.7</td>
<td>2.4</td>
<td>2.2</td>
<td>18.5</td>
<td>10.1</td>
</tr>
<tr>
<td>2020 maximum daily emissions</td>
<td>3.5</td>
<td>49.1</td>
<td>0.6</td>
<td>0.6</td>
<td>6.8</td>
<td>1.7</td>
</tr>
<tr>
<td>2021 maximum daily emissions</td>
<td>48.6</td>
<td>21.5</td>
<td>0.4</td>
<td>0.3</td>
<td>7.2</td>
<td>1.9</td>
</tr>
<tr>
<td>Maximum Daily Emissions of All Years of Construction</td>
<td>48.6</td>
<td>68.8</td>
<td>3.0</td>
<td>2.8</td>
<td>20.1</td>
<td>10.7</td>
</tr>
<tr>
<td>BAAQMD Potentially Significant Impact Threshold</td>
<td>54</td>
<td>54</td>
<td>82</td>
<td>54</td>
<td>Basic Construction Mitigation Measures</td>
<td>Basic Construction Mitigation Measures</td>
</tr>
<tr>
<td>Exceed BAAQMD Threshold?</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Source: CalEEMod version 2016.3.2. See Appendix AIR for emission model outputs.

Notes: Project construction activities for 915 Antonio Street are assumed to occur over a 32-month period.
Unmitigated construction activities would exceed the BAAQMD significance thresholds. The BAAQMD (2017a; Table 4.2-4) recommends implementation of the Basic Construction Mitigation Measures to mitigate dust and exhaust construction impacts for all projects, regardless of whether construction emissions thresholds would be exceeded.

Table 4.2-4

BAAQMD Basic Construction Mitigation Measures

<table>
<thead>
<tr>
<th>BAAQMD Basic Construction Mitigation Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. All exposed surfaces (e.g., parking areas, staging areas, soil piles, graded areas, and unpaved access roads) shall be watered two times per day.</td>
</tr>
<tr>
<td>2. All haul trucks transporting soil, sand, or other loose material off-site shall be covered.</td>
</tr>
<tr>
<td>3. All visible mud or dirt track-out onto adjacent public roads shall be removed using wet power vacuum street sweepers at least once per day. The use of dry power sweeping is prohibited.</td>
</tr>
<tr>
<td>4. All vehicle speeds on unpaved roads shall be limited to 15 mph.</td>
</tr>
<tr>
<td>5. All roadways, driveways, and sidewalks to be paved shall be completed as soon as possible. Building pads shall be laid as soon as possible after grading unless seeding or soil binders are used.</td>
</tr>
<tr>
<td>6. Idling times shall be minimized either by shutting equipment off when not in use or reducing the maximum idling time to 5 minutes (as required by the California airborne toxics control measure Title 13, Section 2485 of the California Code of Regulations). Clear signage shall be provided for construction workers at all access points.</td>
</tr>
<tr>
<td>7. All construction equipment shall be maintained and properly tuned in accordance with manufacturer’s specifications. All equipment shall be checked by a certified visible emissions evaluator.</td>
</tr>
<tr>
<td>8. Post a publicly visible sign with the telephone number and person to contact at the lead agency regarding dust complaints. This person shall respond and take corrective action within 48 hours. The air district’s phone number shall also be visible to ensure compliance with applicable regulations.</td>
</tr>
</tbody>
</table>

Source: BAAQMD 2017a

The BAAQMD Basic Construction Mitigation Measures are required per Mitigation Measure AQ-2B-1 of the City’s 2035 General Plan EIR (San Leandro 2016b) and are considered uniformly applicable development policies. Implementation of the BAAQMD Basic Construction Mitigation Measures would result in the estimated construction-generated criteria pollutant and precursor emissions shown in Table 4.2-5. In addition, as described below, a project-specific condition of approval (see criterion d) would require all off-road diesel-powered construction equipment to have EPA-certified Tier 4 engines (or have verified equivalent emissions reductions). The use of Tier 4 engines would reduce project construction emissions of NOx, exhaust PM10, and exhaust PM2.5.

Table 4.2-5

Consortium-related Criteria Pollutant and Precursor Emissions – After Implementation of BAAQMD Basic Construction Mitigation Measures (Maximum Pounds Per Day)

<table>
<thead>
<tr>
<th>Construction Activities</th>
<th>ROG</th>
<th>NOx</th>
<th>Exhaust PM10</th>
<th>Exhaust PM2.5</th>
<th>Fugitive Dust PM10</th>
<th>Fugitive Dust PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>844 Alvarado Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019 maximum daily emissions</td>
<td>9.6</td>
<td>11.4</td>
<td>0.3</td>
<td>0.3</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>915 Antonio Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 2019 maximum daily emissions</td>
<td>1.5</td>
<td>43.6</td>
<td>0.2</td>
<td>0.2</td>
<td>8.6</td>
<td>4.6</td>
</tr>
</tbody>
</table>

City of San Leandro 915 Antonio Street and 844 Alvarado Street Project
February 2019 CEQA Infill Checklist

4.0-9
In addition, projects are required to comply with General Plan policies intended to reduce air quality problems (e.g., Policy EH-3.4, Design, Construction, and Operation). Nevertheless, per 2035 General Plan EIR Impact AQ-2B, criteria pollutant emissions would be significant; thus, future projects would be required to implement Mitigation Measures AQ-2B-1 and AQ-2B-2, as described below:

Mitigation Measure AQ-2B-1: As part of the City’s development approval process, the City shall require applicants for future development projects to comply with the current Bay Area Air Quality Management District’s basic control measures for reducing construction emissions of PM$_{10}$ (Table 8-1, Basic Construction Mitigation Measures Recommended for All Proposed Projects, of the BAAQMD CEQA Guidelines).

Mitigation Measure AQ-2B-2: Prior to issuance of construction permits, development project applicants that are subject to CEQA and exceed the screening sizes in the BAAQMD’s CEQA Guidelines shall prepare and submit to the City of San Leandro a technical assessment evaluating potential project construction-related air quality impacts. The evaluation shall be prepared in conformance with the BAAQMD methodology in assessing air quality impacts. If construction-related criteria air pollutants are determined to have the potential to exceed the BAAQMD thresholds of significance, as identified in the BAAQMD CEQA Guidelines, the City of San Leandro shall require that applicants for new development projects incorporate mitigation measures to reduce air pollutant emissions during construction activities to below these thresholds (Table 8-2, Additional Construction Mitigation Measures Recommended for Projects with Construction Emissions Above the Threshold, of the BAAQMD CEQA Guidelines, or applicable construction mitigation measures subsequently approved by BAAQMD). These identified measures shall be incorporated into all appropriate construction documents (e.g., construction management plans) submitted to the City and shall be verified by the City’s Engineering/Transportation Department, Building and/or Planning Division, and/or Community Development Department.

The 2035 General Plan EIR identified this impact as significant and unavoidable because the future projects were unknown. However, with implementation of Mitigation Measure AQ-2B-2, which
requires development projects incorporate mitigation measures to reduce air pollutant emissions during construction activities to below BAAQMD thresholds, the project’s impact would be less than significant with mitigation.

Operational Emissions

The project would result in long-term operational emissions of criteria air pollutants and ozone precursors (e.g., ROG and NOx). Project-generated increases in emissions would be predominantly associated with motor vehicle use, energy required for building operations, energy used due to water consumption, energy used in solid waste collection and disposal, and area sources such as gas fireplaces and the use of landscaping equipment. All long-term operational emissions presented are calculated for the estimated first full year of project operations (2022). The emissions estimates account for BAAQMD Regulation 6, Rule 3: No wood-burning devices (e.g., fireplaces or woodstoves) shall be installed in new construction. Daily trip rates for the project’s operational-related vehicle trips used in the model were based on the estimate of 2,145 daily trips for the project from the transportation impact study (CHS Consulting Group 2018). Long-term predicted maximum daily operational emissions are summarized in Table 4.2-6.

Table 4.2-6

LONG-TERM OPERATIONAL CRITERIA POLLUTANT AND PRECURSOR EMISSIONS

<table>
<thead>
<tr>
<th>Source</th>
<th>Emissions</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROG</td>
<td>NOx</td>
<td>Total PM₁₀</td>
<td>Total PM₂·₅</td>
</tr>
<tr>
<td>Summer Emissions (Pounds per Day)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>14.3</td>
<td>4.5</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Energy</td>
<td>0.2</td>
<td>1.6</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Mobile</td>
<td>3.6</td>
<td>20.9</td>
<td>10.6</td>
<td>2.9</td>
</tr>
<tr>
<td>Total</td>
<td>18.1</td>
<td>27.4</td>
<td>11.4</td>
<td>3.7</td>
</tr>
<tr>
<td>Winter Emissions (Pounds per Day)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>14.3</td>
<td>4.9</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Energy</td>
<td>0.2</td>
<td>1.6</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Mobile</td>
<td>3.1</td>
<td>21.6</td>
<td>10.6</td>
<td>2.9</td>
</tr>
<tr>
<td>Total</td>
<td>17.6</td>
<td>28.1</td>
<td>11.4</td>
<td>3.7</td>
</tr>
<tr>
<td>BAAQMD Potentially Significant Impact</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold (Daily Emissions)</td>
<td>54</td>
<td>54</td>
<td>82</td>
<td>54</td>
</tr>
<tr>
<td>Exceed BAAQMD Daily Threshold?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Annual Emissions (Tons per Year)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project</td>
<td>3.0</td>
<td>4.3</td>
<td>1.9</td>
<td>0.6</td>
</tr>
<tr>
<td>BAAQMD Potentially Significant Impact</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold (Annual Emissions, Tons per Year)</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Exceed BAAQMD Annual Threshold?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Source: CalEEMod version 2016.3.2 See Appendix AIR for emission model outputs.
As shown in Table 4.2-6, the project’s operational emissions, which were quantified pursuant to Mitigation Measure AQ-2A, would not exceed the BAAQMD significance thresholds for criteria air pollutants or ozone precursors. Therefore, the effect of the project would be less than significant with mitigation and would not be more significant than described in the prior EIR.

Criterion c)

Analysis in the 2035 General Plan EIR

Potential cumulative impacts on air quality were analyzed in the 2035 General Plan EIR (Section 4.2.5, pages 4.2-22 through 53). The City determined that emissions from cumulative development in San Leandro would be significant and that even with implementation of Mitigation Measure AQ-2A, this impact would be significant and unavoidable. The TOD EIR reached a similar conclusion, stating that the cumulative air quality impacts of future development in San Leandro would be significant and unavoidable.

New Information and Specific Effects of the Project

According to the BAAQMD (2017a), no single project is sufficient in size, by itself, to result in nonattainment of ambient air quality standards. Instead, a project’s individual emissions contribute to existing cumulatively significant adverse air quality impacts. In developing thresholds of significance for air pollutants, the BAAQMD considered the emissions levels for which a project’s individual emissions would be cumulatively considerable. According to the BAAQMD (2017a), if a project exceeds the district’s identified significance thresholds, the project would be cumulatively considerable. As shown above, the project’s construction and operational emissions would be below the BAAQMD significance thresholds. Therefore, the project would not result in a cumulatively considerable net increase of criteria pollutants and ozone precursors. This impact would not be more significant than described in the prior EIR.

Criterion d)

Analysis in the 2035 General Plan EIR

The 2035 General Plan EIR (Section 4.2.5, pages 4.2-22 through 53) evaluated the potential for exposure to substantial pollutant concentrations and the City determined that any impacts related to carbon monoxide hotspots would be less than significant. However, the EIR determined that potential impacts from toxic air contaminants would be potentially significant for warehouse projects that would generate substantial numbers of diesel-emitting truck trips. This impact does not apply to the proposed project.

New Information and Specific Effects of the Project

As described below, the project’s impact would not be more significant than described in the prior EIR with respect to local mobile-source carbon monoxide (CO) pollutant concentrations, toxic air contaminant (TAC) emissions during project construction, construction-generated airborne asbestos, and TAC and localized PM2.5 emissions during operation.

Local Mobile-Source CO Pollutant Concentrations

Projects meeting all the following screening criteria would be considered to have a less than significant impact on localized CO concentrations (BAAQMD 2017a):
1. The project is consistent with an applicable congestion management program established by the county congestion management agency for designated roads or highways, regional transportation plans, and local congestion management agency plans.

2. The project traffic would not increase traffic volumes at affected intersections to more than 44,000 vehicles per hour.

3. The project traffic would not increase traffic volumes at affected intersections to more than 24,000 vehicles per hour where vertical and/or horizontal mixing is substantially limited.

The busiest roadway in San Leandro is Interstate 880, which has a peak hourly traffic volume of 15,000 vehicles (Caltrans 2016). No intersections in San Leandro have the potential for traffic volumes of more than 44,000 vehicles per hour, nor are there intersections where vertical and/or horizontal mixing is substantially limited and there is the potential to have traffic volumes of more than 24,000 vehicles per hour. The project would not contribute to traffic that would result in an intersection that would experience traffic volumes of more than 44,000 vehicles per hour or volumes of more than 24,000 vehicles per hour where vertical and/or horizontal mixing is substantially limited.

According to the project’s transportation impact study (CHS Consulting Group 2018), the project would conform to the standards outlined in the TOD Strategy and would be expected to generate trips that would be within the projected vehicular trip generation at buildout of the TOD Strategy Area. Growth projections in local planning documents such as the San Leandro General Plan and TOD Strategy are key input to Bay Area regional transportation and congestion management plans. The impact from project-generated localized concentrations of mobile-source CO would be less than significant.

TAC Emissions During Construction Activities

The project area is near residential neighborhoods adjacent to the 844 Alvarado Street site and across the railroad tracks to the west. Project construction would generate diesel PM emissions from the use of off-road diesel equipment required for demolition, site grading, excavation, and other construction activities. Diesel PM is the primary toxic air contaminant that would be emitted during construction. Health-related risks associated with diesel-exhaust emissions are primarily linked to long-term exposure and the associated risk of contracting cancer. The amount to which the receptors could be exposed, which is a function of concentration and duration of exposure, is the primary factor used to determine health risk.

According to the BAAQMD (2017a):

Due to the variable nature of construction activity, the generation of TAC emissions in most cases would be temporary, especially considering the short amount of time such equipment is typically within an influential distance that would result in the exposure of sensitive receptors to substantial concentrations. Concentrations of mobile-source diesel PM emissions are typically reduced by 70 percent at a distance of approximately 500 feet (ARB 2005). In addition, current models and methodologies for conducting health risk assessments are associated with longer-term exposure periods of 9, 40, and 70 years, which do not correlate well with the temporary and highly variable nature of construction activities. This results in difficulties with producing accurate estimates of health risk.

The California Office of Environmental Health Hazard Assessment (OEHHA) has developed risk assessment guidelines as part of the Air Toxics Hot Spots Program to meet the regulatory requirements for permitting of stationary sources of some pollutants subject to the Air Toxics “Hot Spots” Information and Assessment Act (Assembly Bill [AB] 2588). The construction activities
associated with the project are not a stationary source of pollutants subject to AB 2588 reporting or health risk assessment requirements. OEHHA has recognized that the tools and guidelines developed for the Hot Spots Program are sometimes used for short-term projects and has established some guidance for exposure duration to be used in analysis of short-term projects. However, OEHHA (2015) acknowledges that cancer potency factors are based on animal lifetime studies or worker studies where there is long-term exposure to the carcinogenic agent and there is considerable uncertainty in trying to evaluate the cancer risk from projects that will only last a small fraction of a lifetime.

Construction of the project would occur over an approximately 32-month period. The demolition, site preparation, and grading phase for construction at the 915 Antonio Street site would involve the heaviest use of diesel-powered construction equipment and would last approximately 5.5 months. The maximum on-site exhaust PM$_{10}$ emissions from construction activities are estimated to be 2.4 pounds per day during demolition (see Appendix AIR). The small size of the project sites (5.7 acres and 0.29 acres) would limit the size and number of heavy construction equipment that can work simultaneously. In addition, the use of diesel-powered equipment during construction would be temporary and episodic. Construction activities would be dispersed throughout the sites and would not be concentrated along the property lines where the closest residences are located.

EPA-certified Tier 4 off-road diesel engines have exhaust reduction systems that reduce diesel PM emissions by more than 85 percent compared to earlier engines, and most construction equipment sold in the United States since 2015 is Tier 4 certified. Older construction equipment retrofitted with CARB-verified level 3 diesel particulate filters also reduce diesel PM emissions by more than 85 percent. Even though diesel PM generated by the project’s construction-related activities, during typical meteorological conditions, would not be expected to create an adverse effect on community health risks due to the project’s short construction duration and small size, the use of Tier 4 engines or diesel particulate filters on off-road construction equipment would significantly reduce emissions and provide a margin of safety for public health risks during unusual meteorological conditions that could result in poor dispersion of diesel PM.

General Plan Policy EH-3.4, Design, Construction, and Operation, requires new development to be designed and constructed in a way that reduces the potential for future air quality problems, including through ensuring that best available control technology is used for operations that could generate air pollutants (San Leandro 2016a). Mitigation Measure AQ-2B-2 also requires incorporation of measures to reduce air pollutant emissions during construction. A project-specific condition of approval would require the project applicant and/or its contractor to use EPA-certified Tier 4 engines or CARB-verified level 3 diesel particulate filters on all diesel off-road construction equipment with more than 50 horsepower. With applicable regulations, including the project-specific condition of approval, this impact would be less than significant.

Construction-Generated Airborne Asbestos

Construction of the project would involve demolition of existing buildings on the 915 Antonio Street site, which may include asbestos-containing materials (ACM). Demolition would be subject to BAAQMD (1998) Regulation 11, Rule 2, Asbestos Demolition, Renovation and Manufacturing, which regulates the safe handling and disposal of asbestos-containing materials. California Health and Safety Code Section 19827.5 requires that local agencies not issue demolition permits until an applicant has demonstrated compliance with notification requirements under applicable federal regulations regarding hazardous air pollutants. The City of San Leandro would not issue a demolition permit until all requirements have been met. In accordance with the state regulation, the BAAQMD must be notified prior to demolition or abatement activities. Compliance with state
and BAAQMD regulations, as implemented, monitored, and enforced through the City’s permitting process, would ensure the impacts due to ACMs would be less than significant.

TAC and Localized PM$_{2.5}$ Emissions During Operation

Long-term operation of the project may result in emissions of diesel PM and PM$_{2.5}$ from occasional delivery trucks for the 550-square-foot café. A café of this small size would not be expected to require more than an average of one heavy truck delivery per day. Long-term operation of the residential component of the project would also add a small number of truck trips to existing traffic for trash collection (1 to 2 heavy trucks per week) and deliveries (not more than an average of 1 heavy truck per day). The additional trucks trips resulting from operation of the project would not contribute significantly to existing truck volumes on area roadways. Therefore, the project would not include any new sources of TACs, nor would the project exacerbate any existing conditions related to localized concentrations of TACs or PM$_{2.5}$. Because this project is not a warehouse and would not generate substantial truck trips, this impact would be less than significant, and the mitigation outlined in the 2035 General Plan EIR does not apply.

The effect of existing sources of TACs or localized concentrations of air pollutants on future residents of the project is considered an effect of environment on the project and as such, is not a CEQA consideration. However, it is a planning consideration for the City in evaluating the project design and in determination of project approvals. The BAAQMD’s (2018) Planning Healthy Places website provides planning-level guidance regarding existing sources of TACs. The website has an interactive map which shows areas that are estimated to have elevated levels of air pollution and/or TACs resulting from permitted stationary sources and high-volume roadways. The interactive map does not show any TAC sources or areas with elevated vehicle emissions of concern for future residents of the project.

Criterion e)

Analysis in the 2035 General Plan EIR

The potential for substantial odor impacts was analyzed in the 2035 General Plan EIR (Section 4.2.5, pages 4.2-22 through 53) and the City determined that implementation of General Plan policies related to sting of odor producing uses (e.g., Policy LU-10.3, Buffering) would reduce potential impacts to less than significant.

New Information and Specific Effects of the Project

Heavy-duty construction equipment used for the construction of the project would emit odors. However, construction would be short term; exhaust odors would dissipate and be minimized by BAAQMD’s basic construction measures and 2035 General Plan policies (e.g., Policy EH-3.5, Odors; Policy LU-10.2, Off-Site Impacts), and the project would not create objectionable odors affecting a substantial number of people.

For operational odor impacts, the project proposes land uses including a café and residential apartments, neither of which is identified as an odor source in the BAAQMD (2017a) CEQA Air Quality Guidelines. Therefore, no substantial operational odor impacts would occur, and this impact would not be more significant than described in the prior EIR.
4.0 INFILL CHECKLIST

<table>
<thead>
<tr>
<th>Significant Impact</th>
<th>Less Than Significant or Less Than Significant with Mitigation Incorporated</th>
<th>No Impact</th>
<th>Analyzed in the Prior EIR</th>
<th>Substantially Mitigated by Uniformly Applicable Development Policies</th>
</tr>
</thead>
</table>

4.3 BIOLOGICAL RESOURCES. Would the project:

a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special-status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or US Fish and Wildlife Service?

- [] Significant Impact
- [] Less Than Significant or Less Than Significant with Mitigation Incorporated
- [X] No Impact
- [] Analyzed in the Prior EIR
- [] Substantially Mitigated by Uniformly Applicable Development Policies

b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or US Fish and Wildlife Service?

- [] Significant Impact
- [] Less Than Significant or Less Than Significant with Mitigation Incorporated
- [X] No Impact
- [] Analyzed in the Prior EIR
- [] Substantially Mitigated by Uniformly Applicable Development Policies

c) Have a substantial adverse effect on federally protected wetlands, as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal wetlands, etc.), through direct removal, filling, hydrological interruption, or other means?

- [] Significant Impact
- [] Less Than Significant or Less Than Significant with Mitigation Incorporated
- [X] No Impact
- [] Analyzed in the Prior EIR
- [] Substantially Mitigated by Uniformly Applicable Development Policies

d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?

- [] Significant Impact
- [] Less Than Significant or Less Than Significant with Mitigation Incorporated
- [X] No Impact
- [] Analyzed in the Prior EIR
- [] Substantially Mitigated by Uniformly Applicable Development Policies

e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?

- [] Significant Impact
- [] Less Than Significant or Less Than Significant with Mitigation Incorporated
- [X] No Impact
- [] Analyzed in the Prior EIR
- [] Substantially Mitigated by Uniformly Applicable Development Policies

f) Conflict with the provisions of an adopted habitat conservation plan, natural community conservation plan, or other approved local, regional, or state habitat conservation plan?

- [] Significant Impact
- [] Less Than Significant or Less Than Significant with Mitigation Incorporated
- [X] No Impact
- [] Analyzed in the Prior EIR
- [] Substantially Mitigated by Uniformly Applicable Development Policies
ENVIRONMENTAL CHECKLIST AND DISCUSSION

Criterion a)

Analysis in the 2035 General Plan EIR

Potential impacts on special-status species were analyzed in the 2035 General Plan EIR (Section 4.3.3, pages 4.3-16 through 23) and were determined to result in a less than significant impact given compliance with General Plan policies (e.g., Policy OSC-6.1, Ecosystem Management) and existing regulations protecting special-status species.

New Information and Specific Effects of the Project

In compliance with 2035 General Plan Action OSC-6.4.A, Biological Assessments, WRA Environmental Consultants (2018) prepared a baseline assessment of potential biological resources for the project, which is included as Appendix BIO. The project area is characterized by non-sensitive biological communities including ruderal, non-native annual grassland, and previously developed/disturbed areas (WRA 2018). Special-status plant and wildlife species are known to exist in the vicinity of the project sites, but their presence is unlikely or there is no potential for the species to occur on the project sites. No sensitive habitats or special-status species were present on the sites at the time of the field survey.

However, the WRA assessment identified nesting bird preconstruction surveys as a best practice to address potential impacts on birds and their nests. This is consistent with General Plan Policy OSC-6.2, Mitigation of Development Impacts, which requires appropriate mitigation for potential adverse impacts. Accordingly, as described in the TOD EIR (San Leandro 2007b), the City would require, as a condition of approval, that any tree removal/trimming and/or other vegetation removal required to accommodate project activities be completed between August 16 and January 31, outside of the nesting season. If such work must occur during the nesting season, a nesting bird survey would be conducted by a qualified wildlife biologist no more than 14 days prior to the start of these activities. If active nests are identified, a no-disturbance buffer would be established around each nest to avoid impacts on nesting birds. Buffers typically range from 25 feet to 500 feet, depending on the species present and the setting, and would remain in place until all young are fledged or the nest otherwise becomes inactive.

The project would comply with 2035 General Plan Policy OSC-6.2, Mitigation of Development Impacts, and the regulatory requirements outlined in the TOD Strategy EIR to address potential impacts on nesting birds. With this measure, the effect of the project on nesting migratory birds would not be more significant than described in the prior EIR.

Criterion b)

Analysis in the 2035 General Plan EIR

Potential impacts on sensitive habitat areas were analyzed in the 2035 General Plan EIR (Section 4.3.3, pages 4.3-16 through 23) and any impacts were determined to be less than significant with implementation of General Plan policies requiring a site-specific assessment under Action OSC-6.4.A, Biological Assessments, and Policies OSC-5.1, Creek Stewardship, and OSC-5.2, Creekside Development, which address potential adverse effects of new development along San Leandro Creek. Similarly, the TOD EIR outlined policies to protect San Leandro Creek, reducing potential impacts to less than significant.
New Information and Specific Effects of the Project

The project sites do not support any riparian habitat or other sensitive natural community (WRA 2018). Any sensitive habitat in San Leandro Creek is approximately 100 feet away from the closest portion of the 915 Antonio Street site and approximately 90 feet from the closest portion of the 844 Alvarado Street site. Therefore, the project would have no direct impacts on creek habitat and site stormwater systems would be managed to minimize sedimentation in downstream habitat areas. There are no other sensitive natural habitats in the vicinity of the project area (WRA 2018). Therefore, the effect of the project would not be more significant than described in the prior EIR.

Criterion c)

Analysis in the 2035 General Plan EIR

The 2035 General Plan EIR (Section 4.3.3, pages 4.3-16 through 23) determined that any impacts on wetlands would be less than significant with implementation of General Plan policies, including completion of a biological assessment as required by Action OSC-6.4.A, Biological Assessments. Similarly, the TOD EIR contained policies to protect and enhance wetlands and the impacts of the TOD Strategy were found to be less than significant.

Baseline surveys determined there are no jurisdictional wetlands, non-wetland waters, or other sensitive habitat features on the project site (WRA 2018). Scattered areas of hydrophytic vegetation were investigated for hydrology and hydric soil parameters; however, based on soil characteristics and other factors, none of these areas were determined to be potential wetlands. The entire site is covered with non-native annual grasses and previously developed areas, neither of which are considered sensitive habitats. As noted above, the project area is at least 90 feet away from San Leandro Creek. Because the project would not result in development on or immediately adjacent to wetlands, the project’s impacts on wetlands would not be more significant than described in the prior EIR.

Criterion d)

Analysis in the 2035 General Plan EIR

The 2035 General Plan EIR (Section 4.3.3, pages 4.3-16 through 23) determined that any impacts on wildlife movement or migration would be less than significant with implementation of General Plan policies requiring a site-specific assessment under Action OSC-6.4.A, Biological Assessments. Similarly, the TOD EIR noted that development that would increase water temperature or turbidity or decrease dissolved oxygen levels and could adversely affect creek water quality and reduce the quality of fish habitat in San Leandro Creek but that required measures to protect San Leandro Creek, including existing stormwater regulations and best management practices (BMP), would reduce these impacts to less than significant.

Baseline surveys determined there are no jurisdictional wetlands, non-wetland waters, or other sensitive habitat features on the project site (WRA 2018). Scattered areas of hydrophytic vegetation were investigated for hydrology and hydric soil parameters; however, based on soil characteristics and other factors, none of these areas were determined to be potential wetlands. The entire site is covered with non-native annual grasses and previously developed areas, neither of which are considered sensitive habitats. As noted above, the project area is at least 90 feet away from San Leandro Creek. Because the project would not result in development on or immediately adjacent to wetlands, the project’s impacts on wetlands would not be more significant than described in the prior EIR.

New Information and Specific Effects of the Project

The project would not result in development on or immediately adjacent to areas sensitive for migratory fish or wildlife species, or established resident or migratory wildlife corridors, nor would it impede the use of wildlife nursery sites. No sensitive habitats or special-status species are present in the project area (WRA 2018). As noted above, the project area is at least 90 feet away from San Leandro Creek, which avoids potential impacts on fish and wildlife movement along this...
The project would require a SWPPP and would incorporate BMPs, as described in the 2035 General Plan EIR (Section 4.8, Hydrology and Water Quality). Therefore, the effect of the project would **not be more significant than described in the prior EIR**.

Criterion e)

Analysis in the 2035 General Plan EIR

The 2035 General Plan EIR (Section 4.3.3, pages 4.3-16 through 23) found that any impacts on biological resources protected by local ordinances would be **less than significant** with enforcement of City zoning code. All development projects would be required to comply with Section 4-1906, Existing Trees on Development Sites, in Article 19, Landscape Requirements, of the City of San Leandro Zoning Code. Similarly, as described in the TOD EIR, compliance with local policies and ordinances would reduce impacts on locally protected biological resources to less than significant.

New Information and Specific Effects of the Project

The project would comply with the relevant City municipal code. Several street trees along Alvarado Street may qualify for protection per the San Leandro Municipal Code. The City regulates trees directly under municipal control such as street trees and trees on municipal properties (San Leandro 2018). The Municipal Code does not afford protection to trees on private property, regardless of species, size, or historical significance. The City allows citizens to request the removal, spraying, pruning, root pruning, or replacement of street trees on or adjacent to their properties. The Public Works Department is then required to inspect the relevant tree and determine what actions may be taken. The Public Works Department must also be consulted if actions such as the moving of a building or an oversized vehicle would require trimming, moving, removing, or replanting a City-owned tree. This consultation must occur at least 48 hours before the start of work. Any activity related to City-owned trees must be performed by City employees unless the Public Works Director explicitly approves action by private individuals or companies. Trees may also be afforded some protection if a project requires a grading permit from the City Engineer (San Leandro 2018). As described in Section 3.0, Project Description, the project’s open space and landscaping plan includes new plantings, landscaping, and open space areas on the project sites. Compliance with these local regulations would ensure that the effect of the project would **not be more significant than described in the prior EIR**.

Criterion f)

Analysis in the 2035 General Plan EIR

The potential for conflicts with habitat conservation plans was analyzed in the 2035 General Plan EIR (Section 4.3.3, pages 4.3-16 through 23) and was determined to result in **no impact** because there are no adopted habitat conservation plans, natural community conservation plans, or other approved local, regional, or state habitat conservation plans applicable to the project area (CDFW 2017).

New Information and Specific Effects of the Project

Because there are no adopted habitat conservation plans, natural community conservation plans, or other approved local, regional, or state habitat conservation plans applicable to the project area, this impact would **not be more significant than described in the prior EIR**.
4.0 INFILL CHECKLIST

4.4 CULTURAL RESOURCES. Would the project:

a) Cause a substantial adverse change in the significance of a historical resource as defined in Section 15064.5?	☐	☐	☐	☑	☐
b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to Section 15064.5?	☐	☐	☐	☑	☐
c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?	☐	☐	☐	☑	☐
d) Disturb any human remains, including those interred outside of formal cemeteries?	☐	☐	☐	☑	☐

TRIBAL CULTURAL RESOURCES. Consultation with a California Native American tribe that has requested such consultation may assist a lead agency in determining whether the project may adversely affect tribal cultural resources, and if so, how such effects may be avoided or mitigated. Whether or not consultation has been requested, would the project cause a substantial adverse change in a site, feature, place, cultural landscape, sacred place, or object, with cultural value to a California Native American tribe, which is any of the following:

a) Included or determined to be eligible for inclusion in the California Register of Historical Resources?	☐	☐	☐	☐	☑
b) Included in a local register of historical resources?	☐	☐	☐	☐	☑
c) Determined by the lead agency, in its discretion and supported by substantial evidence, to be a tribal cultural resource, after applying the criteria in Public Resources Code Section 5024.1(c), and considering the significance of the resource to a California Native American tribe?	☐	☐	☐	☐	☑

Michael Baker International (2018b) prepared a cultural resources study and eligibility evaluations, which is included as Appendix CUL. Information from that study is summarized throughout this subsection.
SETTING

CULTURAL RESOURCES IDENTIFICATION AND EVALUATION EFFORTS

Records Search

To determine the presence of previously identified cultural resources, Michael Baker International staff conducted a records search (NWIC File #17-2665) of the project area within a quarter-mile search radius on May 14, 2018. The Northwest Information Center (NWIC), as part of the California Historical Resources Information System, California State University, Sonoma, an affiliate of the California Office of Historic Preservation (OHP), is the official state repository of cultural resource records and reports for Alameda County. As part of the records search, the following federal and state inventories were reviewed:

- California Inventory of Historic Resources (OHP 1976).
- California Points of Historical Interest (OHP 1992 and updates).
- California Historical Landmarks (OHP 1996).
- Directory of Properties in the Historic Property Data File for Alameda County (OHP 2012). The directory includes the listings of the National Register of Historic Places (National Register), National Historic Landmarks, California Register of Historical Resources (California Register), California Historical Landmarks, and California Points of Historical Interest.

Results

No cultural resources were identified in the project area. Four cultural resources were identified within a quarter mile of the project area. Table 4.4-1 briefly describes each resource.

<table>
<thead>
<tr>
<th>Resource Name/#</th>
<th>Address</th>
<th>Description</th>
<th>OHP Status Code</th>
<th>Historical Resource as Defined by CEQA Section 15064.5?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historic-period archaeological resource P-01-000240/CA-ALA-000504H</td>
<td>Location Confidential</td>
<td>Privies/dumps/trash scatters</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>Best Tractor Company/ Caterpillar Tractor Company P-01-003626</td>
<td>800 Davis Street</td>
<td>Commercial office building</td>
<td>15 – Listed in the National Register 35 – Appears eligible for the National Register 7L – State Historical Landmarks 1-769 and Points of Historical Interest designated prior to January 1998 – Needs reevaluation using current standards.</td>
<td>Yes</td>
</tr>
</tbody>
</table>
4.0 Infill Checklist

<table>
<thead>
<tr>
<th>Resource Name/#</th>
<th>Address</th>
<th>Description</th>
<th>OHP Status Code</th>
<th>Historical Resource as Defined by CEQA Section 15064.5?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holy Ghost Chapel, I.D.E.S. Hall</td>
<td>N/A</td>
<td>Community center; religious institution</td>
<td>3S- Appears eligible for the National Register; 5S1 – designated locally; 7L – State Historical Landmarks 1-769 and Points of Historical Interest designated prior to January 1998 – Needs reevaluation</td>
<td>Yes</td>
</tr>
<tr>
<td>SPRR Station, San Leandro Passanger Depot</td>
<td>N/A</td>
<td>Single-family residence</td>
<td>7L – State Historical Landmarks 1-769 and Points of Historical Interest designated prior to January 1998 – Needs reevaluation</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Three previously completed cultural resources studies were identified in the project area, and 13 previous studies were identified within a quarter-mile radius. None of the existing reports identified resources in the project area. **Table 4.4-2** briefly describes each report.

Table 4.4-2
Cultural Resources Studies in the Project Area

<table>
<thead>
<tr>
<th>Author</th>
<th>Date</th>
<th>Title</th>
<th>In Project Area?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter Banks and David A. Fredrickson</td>
<td>1977</td>
<td>An Archaeological Investigation of a Portion of Line P, San Leandro Creek, Alameda County, California</td>
<td>No</td>
</tr>
<tr>
<td>George R. Miller</td>
<td>1980</td>
<td>An Archaeological Reconnaissance of the San Leandro Boulevard Widening Project</td>
<td>No</td>
</tr>
<tr>
<td>David Chavez</td>
<td>1982</td>
<td>Lincoln Property and Davis Street Improvements, San Leandro</td>
<td>Yes</td>
</tr>
<tr>
<td>David Chavez</td>
<td>1984</td>
<td>Archaeological Survey for the 800-foot-long Road Widening Section of San Leandro Boulevard, San Leandro, California</td>
<td>No</td>
</tr>
<tr>
<td>Robert Cartier and Glory Anne Laffey</td>
<td>1986</td>
<td>Section 106, Historic Property Survey Report for the Davis Street Widening Project Between Wayne Avenue and Martinez Street in the City of San Leandro, County of Alameda</td>
<td>No</td>
</tr>
<tr>
<td>Kathryn Gualtieri</td>
<td>1988</td>
<td>FHWA870224A; Davis Street Widening, City of San Leandro</td>
<td>No</td>
</tr>
<tr>
<td>Robert Cartier</td>
<td>1989</td>
<td>Archaeological Analysis of Historic Artifacts at 1220 Orchard Avenue, CA-ALA-504H, in the City of San Leandro, County of Alameda</td>
<td>No</td>
</tr>
<tr>
<td>Brian Hatoff et al.</td>
<td>1995</td>
<td>Cultural Resources Inventory Report for the Proposed Mojave Northward Expansion Project</td>
<td>Yes</td>
</tr>
<tr>
<td>Wendy J. Nelson et al.</td>
<td>2000</td>
<td>Cultural Resources Survey for the Level (3) Communications Long Haul Fiber Optics Project, Segment WS07: Oakland to San Jose</td>
<td>No</td>
</tr>
<tr>
<td>Richard Carrico, Theodore Cooley, and William Eckhardt</td>
<td>2000</td>
<td>Cultural Resources Reconnaissance Survey and Inventory Report for the Metromedia Fiberoptic Cable Project, San Francisco Bay Area and Los Angeles Basin Networks</td>
<td>No</td>
</tr>
</tbody>
</table>
Map and Literature Review

Michael Baker staff conducted a map search of the project area to determine the presence of cultural resources. The following were reviewed:

- Online Soil Survey (California Soil Resource Lab 2018)
- The Portuguese in San Leandro (Rogers 2008)
- Map of the Town of San Leandro (Higley 1855)
- Official Map of the County of Alameda (Higley 1857)
- Township 2 South, Range 3 West Public Land Survey Map (BLM 1870)
- Alameda County Map No. 3 (Thompson & West 1878)
- San Leandro, California (Sanborn Map Company 1898)
- Haywards, Calif., 15-minute topographic quadrangle (USGS 1899)
- San Leandro, California (Sanborn Map Company 1907)
- San Leandro, California (Sanborn Map Company 1911)
- Haywards, Calif., 15-minute topographic quadrangle (USGS 1915)
- San Leandro, California (Sanborn Map Company 1917)
- San Leandro, California (Sanborn Map Company 1928a)
- San Leandro, California (Sanborn Map Company 1928b)
4.0 INFILL CHECKLIST

- Single-frame Aerial Photo ID: AR1CP0000020065 (USGS 1946)
- San Leandro, Calif., 7.5-minute topographic quadrangle (USGS 1948)
- Single-frame Aerial Photo ID: AR1VUO000010019 (USGS 1958)
- San Leandro, Calif., 7.5-minute topographic quadrangle (USGS 1959a)
- San Leandro, Calif., 7.5-minute topographic quadrangle (USGS 1959b [photorevised 1968])
- Single-frame Aerial Photo ID: AR1VBZJ00030082 (USGS 1968)

Results

Historical maps show that the project area, including Antonio and Alvarado Streets, had been platted as part of San Leandro by at least 1855. Historic maps dating from 1898 and 1928 depict residential buildings, stables, and a water tower in the project area. By 1950, there is a reduction in the density of residential buildings and an influx of industrial use. The residences and warehouses were demolished at various times post-1968 until circa 2014 (USGS 1968; Google Earth 2018; Higley 1854, 1855; BLM 1870; Thompson & West 1878; Sanborn-Perris Map Co. 1898; USGS 1899, 1915; Sanborn Map Company 1907, 1911, 1917, 1928a, 1928b; USGS 1946, 1948, 1958, 1959a 1959b, 1968).

In 1928, a Southern Pacific Railroad spur is depicted running from the main railroad line through the area along the former alignment of Antonio Street to a Caterpillar Tractor Company manufacturing complex, a portion of which is located inside the project sites.

Today, portions of the South Pacific Railroad spur (MR 4), an abandoned segment of Antonio Street (MR 3), a warehouse foundation (MR 5), and 829 and 857 Alvarado Street (MR 1 and MR 2, respectively) are located in the project area.

Ethnography

The project area was formerly the territory of the Costanoan within the Ohlone language group. The basic Ohlone social unit was the patrilineal family household. Households grouped together to form villages, and villages combined to form tribelets. There were approximately 40 Ohlone tribelts that traded goods such as obsidian, shell beads, and baskets; participated in ceremonial and religious activities together; intermarried; and maintained extensive reciprocal obligations to one another involving resource collection.

For the Ohlone, acorns served as a dietary staple. Acorns were knocked from trees with poles, leached to remove bitter tannins, and eaten as mush or bread. The Ohlone used a range of other plant resources including buckeye, California laurel, elderberries, manzanita berries, gooseberries, toyon berries, wild grapes, wild onion, catail, amole, wild carrots, clover, and an herb called chuchupate. The Ohlone also hunted black-tailed deer, Roosevelt elk, antelope, and marine mammals; smaller mammals such as dog, skunk, raccoon, rabbit, and squirrel; birds, including geese and ducks; and fish such as salmon, sturgeon, and mollusks.

The Ohlone lived in dome-shaped shelters thatched with fens, tule, grass, and camizo. The Ohlone also built small sweathouses dug into creek banks and roofed with brush, as well as circular dance areas enclosed by fences woven from brush or laurel branches. Basketmaking was generally done by women who crafted cooking and storage containers. Tightly woven baskets, decorated with feathers or shell, were valued exchange items.
Animal bones, teeth, beaks, and claws were used to make awls, pins, knives, and scrapers. Pelts and feathers were used to make clothing and bedding; and sinews were used for cordage and bow strings. Feathers, bone, and shells were crafted into ornaments.

By the late eighteenth century, Spanish settlers established the mission system in Northern California. Mission records indicate that the first tribelet arrived at Mission San Francisco in the fall of 1794. Following the secularization of the missions in 1834, many Ohlone worked as manual laborers on ranchos.

Historic Background

Alameda County

Beginning in the eighteenth century, California was a territory of Spain, and later of Mexico. In the mid-1840s, Mexico’s interest in developing and strengthening its hold on California decreased as the Mexican government became distracted by political developments in central Mexico. The native-born Spanish speakers of Alta California, known as Californios, long accustomed to governmental neglect, experienced relative peace and enjoyed minimal intrusion into their social, political, and economic affairs. During this period, the United States aggressively sought access to the Pacific Ocean, resulting in the Mexican-American War.

Following the American victory and ratification of the Treaty of Guadalupe Hidalgo in 1848, California became a United States territory and, on September 9, 1850, formally joined the Union as the thirty-first state. Alameda County was created from portions of Santa Clara and Contra Costa Counties and incorporated on March 25, 1853.

San Leandro

The Mexican government granted José Joaquin Estudillo nearly 7,000 acres of land on October 16, 1842. The land grant included land between San Leandro Creek and San Lorenzo Creek, from the hills to the bay. Estudillo named his land Rancho San Leandro. Failed gold miners began establishing farms surrounding Rancho San Leandro. Agricultural products included wheat, barley, corn, peas, tomatoes, rhubarb, apricots, and most importantly—the product that put San Leandro on the agricultural map—the cherry. San Leandro was dubbed “The Cherry City.”

With a growing prosperity and the establishment of Alameda County in 1853, San Leandro was elected the county seat on December 30, 1854. Juana Estudillo donated 200 acres to subdivide into a town. John B. Ward laid out the town of San Leandro. The original town plat map was developed in 1855. In 1869, San Leandro became a stop along the transcontinental railroad and enjoyed an infusion of new commerce. On March 21, 1872, San Leandro incorporated as a town. However, in 1873, San Leandro lost the county seat to Oakland.

San Leandro city improvements during the nineteenth and twentieth centuries included the first trolley cars through San Leandro from Oakland to Hayward (1892); telephone service (1898); electric streetlights (1903); construction of “Great Boulevard,” now known as MacArthur Boulevard (1906); and, in 1917, paving streets downtown. Recreational sports clubs and parks opened, and elementary school districts were established.

In 1934, Alameda County funded the construction of the City’s veterans memorial building. Beginning in 1935, Works Progress Administration (WPA) programs installed curbs and gutters throughout the city. City Hall was constructed in 1939.
The city’s population grew from 3,500 in 1911, to 5,000 in 1917, to 12,000 in 1928, and to 25,000 in 1950. San Leandro incorporated as a city in 1933.

From 1940 to 1950, San Leandro underwent a dramatic shift from an agricultural community to an industrial city, with 87 industrial parcels annexed to the city. With increased employment came the demand for more housing. New neighborhoods grew where cherry orchards once flourished.

Portuguese in San Leandro

Helen L. C. Lawrence, a native of the Azores, became mayor of San Leandro in 1941. She served 3 years as mayor and 10 years on the council. Lawrence was San Leandro’s first woman mayor and the first mayor of Portuguese descent in the United States. Her election was indicative of the large Portuguese population in San Leandro, which was once known as the Portuguese capital of the West.

San Leandro had become a principal landing place for Portuguese immigrants at the turn of the twentieth century. A steady stream of Portuguese from the Azores and Hawaii poured into San Leandro, reuniting with family members who immigrated earlier in the nineteenth century. By 1911, the Portuguese comprised over two-thirds of the city’s population; about 80 percent of San Leandro’s Portuguese immigrated from the Azores (Rogers 2008).

Established Portuguese called the Hawaiian Portuguese immigrants “Kanakas.” Kanakas established a small residential community bounded by Davis Street to the north, Williams Street to the south, Orchard Avenue to the west, and Alvarado Street to the east. Approximately 20 single-family residences along Orchard Avenue are contributors to the Orchard Avenue Historic District. The historic district is a San Leandro Historic Resource and is located approximately a quarter mile southwest of the project area (Rogers 2008).

Archaeological Resources

On May 3 and July 17, 2018, an archaeologist surveyed the project sites. The archaeologist’s survey methods consisted of an extensive pedestrian survey which focused on limited exposed ground surfaces. The entire project area was accessible and surveyed, but ground visibility was limited by paved surfaces and dense vegetation. Ground visibility in the unpaved portion of the project sites ranged from 0 to 80 percent. No archaeological deposits were observed but archaeological resources were observed and are discussed in greater detail below. Field survey observations were documented with field notes and digital photographs.

Three historic period archaeological resources were identified in the project area.

Antonio Street Segment (MR 3)

An abandoned segment of Antonio Street was observed. The segment begins at Alvarado Street, continuing straight at 242 degrees for approximately 340 feet. Most of the length of Antonio Street shares its alignment with a Southern Pacific Railroad spur (MR 4). Antonio Street is one of San Leandro’s earliest streets, appearing in the 1855 plat (Higley 1855). From 1898 to 1928, the segment of Antonio Street in the project area was supporting residential development. By 1928, Antonio Street shared its alignment with a Southern Pacific Railroad spur that led to a Caterpillar Tractor Company manufacturing complex. By 1950, most of the residences along Antonio Street were removed and replaced by warehouses (Sanborn-Peris Map Co. 1898; Sanborn Map Company 1928a, 1928b).
Southern Pacific Railroad Spur (MR 4)

The abandoned Southern Pacific Railroad spur was constructed circa 1928 (Sanborn Map Company 1917, 1928a). The existing abandoned spur (mainline to west of the intersection of Alvarado Street and Antonio Street) measures approximately 400 feet. A Caterpillar Tractor Company office building and warehouse were also located at the northwest corner of Alvarado and Davis Streets (Sanborn Map Company 1928a).

Warehouse Foundation (MR 5)

The warehouse foundation consists of slab concrete and a raised concrete platform associated with a circa 1937–built warehouse (Sanborn Map Company 1928a; USGS 1946). The foundation pad measures approximately 35 by 65 feet. A Sanborn Map Company (1928b) map indicates that the warehouse was one story with a concrete floor, metal body, and no chimney. The foundation is surrounded by broken concrete dating to circa 1950 (Sanborn 1928b; USGS 1958).

Built Environment Resources

On May 3, 2018, a historian conducted a built environment field survey of the project sites. The survey was conducted to identify built environment resources. Two built environment resources were identified within the project sites, and one historical resource was identified adjacent to the sites.

829 Alvarado Street (MR 1)

The property at 829 Alvarado Street consists of one warehouse building built in 1967 that is a two-story, rectangular warehouse constructed of concrete, with sliding vinyl windows. The building is now used as a showroom and fabrication site for domestic and commercial stone.

857 Alvarado Street (MR 2)

The property at 857 Alvarado Street consists of four buildings: a single-family residence and three ancillary buildings.

Holy Ghost Chapel, I.D.E.S. Hall (P-01-003628) (MR 6)

Adjacent to the project area on the east side of Alvarado Street is the Holy Ghost Chapel, I.D.E.S. Hall, a Portuguese community center constructed in 1889 and ever since used for the Holy Ghost Celebration on Pentecost Sunday. Joseph Frances Focha, an Azores-born man who immigrated to the United States, was responsible for the funds raised for the land, chapel, and hall and the building of the structures to support the celebrations. The Holy Ghost Festa has been held here since 1882. The Holy Ghost Association moved from Dutton Avenue to the I.D.E.S. Hall (originally an old barn) in 1889. It is a California Point of Historical Interest and San Leandro Historic Resource.

California Register and San Leandro Historic Resources

Archaeological Resources

Three historic period archaeological resources were identified and recommended not eligible for inclusion in the California Register and the list of San Leandro Historic Resources based on lack of association with a historic context. See Appendix CUL for the full evaluations. Table 4.4-3 includes a brief overview of the properties evaluated.
Table 4.4-3
Overview of Properties Evaluated

<table>
<thead>
<tr>
<th>Resource Name</th>
<th>San Leandro Historic Resource</th>
<th>California Register Eligibility</th>
<th>Historical Resource for CEQA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antonio Street Segment (MR 3)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Southern Pacific Railroad Spur (MR 4)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Warehouse Foundation (MR 5)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Built Environment Resources

Two built environment cultural resources were evaluated and recommended not eligible for inclusion in the California Register and the list of San Leandro Historic Resources based on lack of association with a historic context. The properties at 829 and 857 Alvarado Street do not appear eligible at the local or state level for listing in the California Register under Criteria 1, 2, 3, or 4 or as San Leandro Historic Resources under City Landmark or Merit Resource Criteria a, b, c, d, or e. Additionally, the properties were evaluated in accordance with CEQA Guidelines Section 15064.5(a)(2)-(3) using the criteria outlined in PRC Section 5024.1 and do not appear to be historical resources pursuant to CEQA. See Appendix CUL for the full evaluations. **Table 4.4-4** includes a brief overview of the properties evaluated.

Table 4.4-4
Built Properties Evaluated

<table>
<thead>
<tr>
<th>Resource Name</th>
<th>San Leandro Historic Resource</th>
<th>California Register Eligibility</th>
<th>Historical Resource for CEQA</th>
</tr>
</thead>
<tbody>
<tr>
<td>829 Alvarado Street</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>857 Alvarado Street</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Concepts and Terminology for Identification of Tribal Cultural Resources

Tribal cultural resources are defined in CEQA as a site, feature, place, cultural landscape, sacred place, or object with cultural value to a California Native American tribe, which may include non-unique archaeological resources previously subject to limited review under CEQA.

Environmental Checklist and Discussion

Cultural Resources

Criterion a)

Analysis in the 2035 General Plan EIR

Potential impacts on historic resources were analyzed in the 2035 General Plan EIR (Section 4.4.3, pages 4.4-10 through 4.4-19), which determined that compliance with existing federal, state, and local laws and regulations, as well as consistency with General Plan policies, would reduce the impacts of development on historic resources to **less than significant**. The 2035 General Plan policies reduce impacts on historic resources, including Policy CD-1.7, Protecting Resource Integrity, which requires new development to be sensitive to historic resources. Similarly, the TOD
EIR found that compliance with the City’s Historic Preservation Ordinance and other relevant policies would reduce potential impacts on historic resources to less than significant.

New Information and Specific Effects of the Project

Michael Baker International (2018b) conducted a NWIC records search, map review, intensive-level field survey of the project sites, and evaluation of two built environment resources for inclusion in the California Register and the list of San Leandro Historic Resources. No historical resources, as defined by CEQA Section 15064.5(a), were identified on the project sites.

One historical resource, Holy Ghost Chapel, I.D.E.S. Hall (P-01-003628), is located adjacent to the project area on the east side of Alvarado Street. The project would construct a six-story residential building at 915 Antonio Street and relocate the existing FAASL facility to the adjacent parcel north of the Holy Ghost Chapel, I.D.E.S. Hall. The hall would remain in place, with no physical alterations. The project would not indirectly or directly impact the Holy Ghost Chapel, I.D.E.S. Hall because the project would not alter the surroundings such that the significance of the historical resource would be materially impaired. Altering the setting of the resource by building the project would not be a significant impact on historical resource as defined in CEQA Section 15064.5(1) and (2).

Pursuant to the TOD Strategy EIR (San Leandro 2007b) and in reference to the San Leandro Historic Preservation Ordinance, with the assumption that the Holy Ghost Chapel is a City Landmark, the project would be subject to review by the Library-Historical Commission.

Therefore, based on the above analysis and with the additional review required by the City, the project would have a less than significant impact on historical resources. The effect of the project would not be more significant than described in the prior EIR.

Criteria b, c, d)

Analysis in the 2035 General Plan EIR

The 2035 General Plan EIR (Section 4.4.3, pages 4.4-10 through 4.4-19) evaluated potential impacts on archaeological resources, paleontological resources, and human remains. The City determined that compliance with existing state and local laws and regulations and the General Plan policies would reduce impacts on unrecorded archaeological deposits, paleontological resources, unique geological features, and buried human remains to less than significant. For example, any human remains encountered during ground-disturbing activities would be treated in accordance with California Health and Safety Code Section 7050.5, Public Resources Code Section 5097.98, and the California Code of Regulations Section 15064.5(e) (CEQA). Similarly, the TOD EIR concluded that implementation of the City’s General Plan policies would reduce potential impacts on archaeological and paleontological resources and on human remains.

New Information and Specific Effects of the Project

Although no archaeological deposits were observed on the project sites during the survey, undiscovered archaeological deposits could be affected during construction. The City’s 2035 General Plan contains policies and actions to address unanticipated discovery of archaeological and paleontological resources. General Plan Policy CD-1.12, Archaeological Resources, ensures that future projects identify and preserve paleontological, prehistoric, historic, archaeological, and tribal cultural resources. General Plan Action CD-1.12.A, Archaeological Site Inventory, requires the City to “maintain standard conditions of approval for new development which require consultation with a professional archaeologist in the event that any subsurface paleontological,
prehistoric, archaeological, or tribal cultural resources are discovered during any construction or preconstruction activities. This includes consultation with Native American organizations prior to continued site work in the event such remains are discovered. State and local laws also require certain procedures following the discovery of human remains. In accordance with the City’s General Plan and other regulations, the project would be required to implement the following conditions of approval:

- **Archaeological construction monitoring of all ground-disturbing activities.** An archaeologist who meets the Secretary of the Interior’s Standards for Archaeology shall be contracted to monitor all ground-disturbing activities.

- **Treatment of previously unidentified archaeological deposits.** If prehistoric or historical archaeological deposits are discovered during construction, all work within 25 feet of the discovery shall be redirected and an archaeologist shall assess the situation, consult with agencies as appropriate, and make recommendations regarding the treatment of the discovery. Impacts to archaeological deposits shall be avoided by the project, but if such impacts cannot be avoided, the deposits shall be evaluated for their eligibility for the California Register of Historical Resources. If the deposit is not eligible for the California Register, no further protection of the finds is necessary. If the deposits are California Register eligible, they shall be protected from project-related impacts or such impacts shall be mitigated. Mitigation may consist of, but is not necessarily limited to, systematic recovery and analysis of archaeological deposits, recording the resource, preparation of a report of findings, and accessioning recovered archaeological materials at an appropriate curation facility.

- **Treatment of previously unidentified human remains.** Any human remains encountered during project ground-disturbing activities shall be treated in accordance with California Health and Safety Code Section 7050.5. There shall be no further excavation or disturbance of the site or any nearby area reasonably suspected to overlie adjacent remains until the coroner of Alameda County has determined the manner and cause of any death, and the recommendations concerning the treatment and disposition of the human remains have been made to the person responsible for the excavation or to his or her authorized representative. At the same time, an archaeologist shall be contacted to assess the situation and consult with agencies as appropriate. Project personnel/construction workers shall not collect or move any human remains and associated materials. If the human remains are of Native American origin, the coroner must notify the Native American Heritage Commission (NAHC) within 24 hours of this identification. The NAHC will immediately identify a Native American most likely descendant (MLD) to inspect the site and provide recommendations within 48 hours for the proper treatment of the remains and associated grave goods.

Compliance with these measures would ensure that the effect of the project would **not be more significant than described in the prior EIR.**

Tribal Cultural Resources

Criteria a, b, c)

Analysis in the 2035 General Plan EIR

Tribal cultural resources were not analyzed in the 2035 General Plan EIR because the NOP was published prior to AB 52 taking effect on July 1, 2015. However, the City included Action CD-1.12.B,
AB 52 Compliance, as a General Plan policy action, requiring that future development implement the provisions of AB 52 regarding tribal consultation. Implementation of actions required under the General Plan policy would make potential impacts on tribal cultural resources less than significant.

New Information and Specific Effects of the Project

AB 52 requires a lead agency (in this case, the City of San Leandro) to begin consultation with any California Native American tribe that is traditionally and culturally affiliated with the geographic area of the project. Consultation must occur prior to the release of a negative declaration or mitigated negative declaration if:

1. The California Native American tribe that is traditionally and culturally affiliated with the geographic area requested to the lead agency, in writing, to be informed by the lead agency through formal notification of proposed projects; and

2. The California Native American tribe responds, in writing, within 30 days of receipt of the formal notification and requests the consultation (Public Resources Code Section 21080.3.1[d]).

Pursuant to AB 52, the City sent a project notification to seven tribes providing a brief project description and requesting any information regarding tribal cultural resources in the project area. No responses to the letter have been received to date.

No tribal cultural resources (as defined in Public Resources Code Section 21074) were identified in the project sites. However, the project includes ground-disturbing activities that could result in the unanticipated or accidental discovery of potential tribal cultural resources. Implementation of the project-specific standards of approval described above and the City’s standard conditions of approval for grading operations would reduce impacts to less than significant because the measures require grading operations to halt if human remains or cultural resources are discovered, and the resources and/or remains must be evaluated by a qualified professional and, if necessary, mitigation plans formulated and implemented. These measures would ensure that provisions are in place to protect any tribal cultural resources encountered during construction. Therefore, the effect of the project would be substantially mitigated by uniformly applicable development policies.
4.0 INFILL CHECKLIST

4.5 GEOLOGY AND SOILS. Would the project:

a)	Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death, involving:
i)	Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42.
ii)	Strong seismic ground shaking?
iii)	Seismic-related ground failure, including liquefaction?
iv)	Landslides?
b)	Result in substantial soil erosion or the loss of topsoil?
c)	Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction, or collapse?
d)	Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?
e)	Have soils incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems where sewers are not available for the disposal of wastewater?

ENVIRONMENTAL CHECKLIST AND DISCUSSION

Criterion a)

Analysis in the 2035 General Plan EIR

Potential seismic impacts were not evaluated in the 2035 General Plan EIR because exposure of people or structures to seismic hazards is not a CEQA impact. Pursuant to the 2015 CBIA v BAAQMD case, CEQA applies to a project’s impacts on the environment, not the environment’s impacts on the project unless the project would exacerbate the environmental hazard. The project would not
4.0 ENVIRONMENTAL CHECKLIST

cause or worsen seismic activity; therefore, the project would not exacerbate seismic hazards and no further discussion is required.

Criterion b)

Analysis in the 2035 General Plan EIR

The potential for soil erosion and loss of topsoil was analyzed in the 2035 General Plan EIR (Section 4.5.3, pages 4.5-8 through 13) and was determined to result in a less than significant impact. The EIR determined that compliance with existing regulatory requirements, such as erosion control measures specified in Chapter 7-12 of the City of San Leandro Municipal Code, preparation of erosion and sedimentation control plans, and General Plan Policy EH-1.3, Off-Site Impacts of Hillside Development, which requires erosion control measures in areas with known slope hazards, would reduce any potential impacts.

New Information and Specific Effects of the Project

The materials comprising the 915 Antonio Street site’s subsurface soils were observed to consist of medium stiff to very stiff silts and clays and medium dense to very dense sands (PSI 2017a). Accordingly, the proposed structures at this site would be supported on conventional shallow foundations founded on properly placed and compacted, engineered fill and/or competent native soils. For 844 Alvarado Street, the geotechnical report recommends conventional continuous strip footings or isolated spread footings (PSI 2018). As required by existing regulations and policies, the project would require a SWPPP and BMPs, as further described in subsection 4.7, Hazards and Hazardous Materials (see also Appendix HYD). In addition, prior to construction, a full design-level geotechnical study, with development-specific exploration and finalized recommendations, would be performed for the 915 Antonio Street site. Therefore, the effect of the project would not be more significant than described in the prior EIR.

Criteria c, d)

Analysis in the 2035 General Plan EIR

Potential impacts related to unstable soils and expansive soils were analyzed in the 2035 General Plan EIR (Section 4.5.3, pages 4.5-8 through 13) and were determined to result in a less than significant impact. The project would comply with California Building Code requirements and would be subject to General Plan Action EH-1.1.A, Soils and Geologic Reports, which requires the preparation and submittal of soils and/or geologic reports for sites with potentially serious geologic risks. Similarly, the TOD EIR (San Leandro 2007b) evaluated the potential for soils with high shrink-swell potential and low strength and the need to comply with General Plan policies to reduce these hazards.

New Information and Specific Effects of the Project

Pursuant to General Plan Policy EH-1, Risk Management, which is intended to minimize the potential for earthquake damage, and Action EH-1.1A, Soils and Geological Reports, geotechnical reports were prepared for the 915 Antonio Street site (PSI 2017a) and for the 844 Alvarado Street site (PSI 2018), both of which are included as Appendix GEO. As noted above, the materials comprising the project area’s subsurface soils were observed to consist of medium stiff to very stiff silts and clays and loose to very dense sands. The geotechnical reports for both sites contain recommendations for dealing with expansive soils that would be implemented during construction related to floor slab subgrade treatment and placement.
The materials comprising the 915 Antonio Street site’s subsurface soils were observed to consist of medium stiff to very stiff silts and clays and medium dense to very dense sands. The 844 Alvarado Street site was observed to also have medium stiff to very stiff clay soils, while the sands are loose to medium dense. Estimated dry settlement (settlement above the water table) for both sites was calculated to be nil. Therefore, seismically induced dry settlement of soils is not considered a geological hazard for the project.

The results of the liquefaction analyses indicate that the liquefaction potential of both sites is negligible. Based on review of both sites, their neighboring slopes, and the depth to potentially liquefiable soils, lateral spread is not considered to be a concern for the project.

The project area is relatively level and the potential for landslides is not considered to be a significant geological hazard. The 844 Alvarado Street site is 35–40 feet from the top of the San Leandro Creek bank, and the proposed structure is at least 100 feet from the top of the bank. As such, the geotechnical report (PSI 2018) concluded that slope instability along the creek bank and landsides are not substantial hazards. At the far northern portion of the 915 Antonio Street, the site is sloped down to San Leandro Creek (PSI 2017a). General Plan Action EH-1.1A, Soils and Geologic Reports, requires that a project-specific geotechnical design study, including site exploration and finalized recommendations, be completed prior to construction.

By complying with General Plan Action EH-1.1A, which requires project-specific evaluation of soils and geological hazards, the project’s impacts would not be more significant than described in the prior EIR.

Criterion e)

Analysis in the 2035 General Plan EIR

Potential effects from septic systems or alternative wastewater disposal systems were analyzed in the 2035 General Plan EIR (Section 4.5.3, pages 4.5-8 through 13) and were determined to result in less than significant impacts because the projects in the planning area would connect to an existing sewer system. Similarly, the TOD EIR determined that all projects in the TOD Strategy Area would connect to San Leandro’s municipal sewer system.

New Information and Specific Effects of the Project

The project would connect to San Leandro’s municipal sewer system. Therefore, the effect of the project would not be more significant than described in the prior EIR.
4.6 GREENHOUSE GASES. Would the project:

<table>
<thead>
<tr>
<th>a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?</th>
<th>Significant Impact</th>
<th>Less Than Significant or Less Than Significant with Mitigation Incorporated</th>
<th>No Impact</th>
<th>Analyzed in the Prior EIR</th>
<th>Substantially Mitigated by Uniformly Applicable Development Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td></td>
</tr>
</tbody>
</table>

b) Conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of greenhouse gases?

| ☐ | ☐ | ☐ | ☒ | ☐ |

SETTING

The EIR included a background discussion of greenhouse gas (GHG) emission, including applicable regulations. **Appendix AIR** provides a detailed discussion of the current science and potential effects of GHG emissions, and the current regulatory framework. Changes to the setting and regulatory framework are discussed in the analysis of each criterion below.

GHG emissions in this analysis are presented in carbon dioxide equivalents (CO₂e), which weigh each gas by its global warming potential. Expressing GHG emissions in CO₂e takes the contribution of all GHG emissions to the greenhouse effect and converts them to a single unit equivalent to the effect that would occur if only carbon dioxide were being emitted. Additional information on the analysis methodology can be found in **Appendix AIR**.

ENVIRONMENTAL CHECKLIST AND DISCUSSION

Criteria a, b)

Analysis in the 2035 General Plan EIR

Greenhouse gas emissions were analyzed in the 2035 General Plan EIR (Section 4.6.3, pages 4.6-22 through 41); the City determined that the General Plan’s direct and indirect GHG emissions would not exceed identified 2020 GHG efficiency targets and this impact would be **less than significant**.

General Plan emissions were analyzed in the 2035 General Plan EIR, which determined that the plan was consistent with the regional objectives of the Plan Bay Area and the City’s Climate Action Plan. However, because CARB has not yet drafted a plan to achieve the statewide GHG emissions goals established in Executive Order S-03-05, additional state and federal measures may be necessary in the future. Therefore, the City determined that it cannot demonstrate that San Leandro will achieve emissions reductions targets; to that end, the overall impacts of GHG from the General Plan are significant and the following mitigation measure is required.

Mitigation Measure GHG-2: No mitigation measures are currently available to address post-2030 GHG reductions beyond continued implementation of existing and proposed policies and programs. The proposed Plan and the Climate Action Plan (CAP) include measures to align the
City with the GHG reductions of AB 32 and Executive Order B-30-15. However, additional State and federal actions are necessary to ensure that State and federally regulated sources (i.e., sources outside the City's jurisdictional control) take similar aggressive measures to ensure the deep cuts needed to achieve the 2050 target.

Because no additional mitigation measures are currently available, impacts from GHG emissions would be significant and unavoidable. The section below describes the City’s current compliance with applicable GHG emissions reduction plans. The City may be subject to additional state and federal and state measures that would assist the City in achieving future efficiency targets.

New Information and Specific Effects of the Project

GHG emissions associated with new development occur over the short term from construction activities, consisting primarily of emissions from equipment exhaust, as well as long-term regional emissions, primarily associated with new vehicular trips and indirect source emissions, such as electricity usage, and energy usage in water distribution, sewage treatment, and solid waste disposal. The subsections below quantify the project’s GHG emissions as required by BAAQMD. The effect of the project would not be more significant than described in the prior EIR.

Construction GHG Emissions

The BAAQMD does not have an adopted threshold of significance for construction-related GHG emissions. However, the BAAQMD recommends quantification and disclosure of construction GHG emissions. The project’s projected annual construction GHG emissions are shown in Table 4.6-1. The total estimated GHG emissions were amortized over the 30-year expected life span of the structures and included in the project’s estimated operational GHG emissions.

<table>
<thead>
<tr>
<th>TABLE 4.6-1 CONSTRUCTION-RELATED GREENHOUSE GAS EMISSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Year</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>844 Alvarado Street</td>
</tr>
<tr>
<td>2019</td>
</tr>
<tr>
<td>915 Antonio Street</td>
</tr>
<tr>
<td>2019</td>
</tr>
<tr>
<td>2020</td>
</tr>
<tr>
<td>2021</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Amortized Construction Emissions

2,553.3 metric tons/30 years 85.1

Source: CalEEMod version 2016.3.2. See Appendix AIR for emission model outputs.

Notes: Project construction activities are assumed to occur over a 32-month period.

Operational GHG Emissions

BAAQMD (2017a) CEQA Air Quality Guidelines Appendix D provides the justification and substantial evidence supporting the service population efficiency GHG threshold of 4.6 metric tons...
CO₂e per service population per year. This current BAAQMD service population efficiency GHG threshold is intended to achieve the requirements of AB 32 to reduce GHG emissions to 1990 levels by the year 2020. Senate Bill (SB) 32 requires that California, by the year 2030, reduce its statewide GHG emissions to at least 40 percent below 1990 levels. Accordingly, a service population efficiency threshold of 2.8 metric tons CO₂e per service population per year, which is 40 percent below the current BAAQMD threshold, would achieve the state GHG emission targets for 2030. This estimated threshold is a surrogate threshold while the BAAQMD develops thresholds to comply with SB 32. Service population is defined as project residents plus project employees. Using the CalEEMod default population factor of 2.86 people per dwelling unit for mid-rise apartments in Alameda County (CAPCOA 2017), the project’s residential population is estimated to be 1,965, and assuming 5 employees for the 550-square-foot café and 3 employees for the apartments, the total service population would be 1,973.

The project’s GHG emissions estimate assumes emissions reductions per BAAQMD (2015) Regulation 6, Rule 3 (no wood-burning devices shall be installed in new building construction). Daily trip rates for the project’s operational-related vehicle trips used in the model were based on the estimate of 2,145 daily trips from the transportation impact study (CHS Consulting Group 2018). This daily trip generation estimate accounts for reductions resulting from development in a designated TOD area. The project’s estimated GHG emissions are summarized in Table 4.6-2.

<table>
<thead>
<tr>
<th>Emissions Source</th>
<th>Metric Tons CO₂e per Year a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction (amortized over 30 years)</td>
<td>85.1</td>
</tr>
<tr>
<td>Area</td>
<td>36.2</td>
</tr>
<tr>
<td>Energy</td>
<td>1,783.4</td>
</tr>
<tr>
<td>Mobile</td>
<td>2,204.6</td>
</tr>
<tr>
<td>Waste</td>
<td>164.8</td>
</tr>
<tr>
<td>Water</td>
<td>164.5</td>
</tr>
<tr>
<td>Total</td>
<td>4,438.6</td>
</tr>
</tbody>
</table>

Efficiency (total GHG 4,438.6/service population 1,973) (metric tons CO₂e/service population/year) 2.25

<table>
<thead>
<tr>
<th>Annual Threshold Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potentially Significant Impact Threshold (metric tons CO₂e/service population/year)</td>
</tr>
<tr>
<td>Exceed Threshold?</td>
</tr>
</tbody>
</table>

Source: CalEEMod version 2016.3.2 See Appendix AIR for emission model outputs.
Climate Change Scoping Plan/AB 32 and SB 32

As discussed above, the project would not exceed the applied operational threshold for GHG emissions. The project’s GHG emissions would therefore not conflict with the CARB Climate Change Scoping Plan and the GHG emission reduction goals of AB 32 and SB 32.

Plan Bay Area 2040

As required by the Sustainable Communities and Climate Protection Act of 2008 (SB 375), the Metropolitan Transportation Commission and the Association of Bay Area Governments (2017) developed a Sustainable Communities Strategy (SCS) as a component of Plan Bay Area 2040. This plan seeks to reduce GHG and other mobile source emissions through coordinated transportation and land use planning to reduce vehicle miles traveled. As a high-density mixed-use development in a designated transit-oriented development area, the project is consistent with the regional VMT and GHG reduction strategies contained in Plan Bay Area 2040.

Downtown San Leandro Transit-Oriented Development Strategy

The project would be developed in compliance with the TOD Strategy. The strategy’s two guiding goals are to increase transit ridership and to enhance downtown San Leandro as a vibrant, pedestrian-oriented destination with a strong sense of place and civic identity (San Leandro 2007a). The project area is identified as part of Special Policy Area 5 in the strategy. Implementing the TOD Strategy would help reduce GHG emissions by reducing vehicle miles traveled per resident of the TOD area and would be consistent with the GHG reduction efforts promoted by Plan Bay Area 2040.

San Leandro Climate Action Plan

The project is in the TOD area, which was identified in the San Leandro (2009) Climate Action Plan’s goal to encourage development that promotes walkable communities. The project is a high-density residential mixed-use development near the San Leandro BART station; the project supports the implementation of the TOD Strategy. Therefore, the project is consistent with the Climate Action Plan.
4.7 HAZARDS AND HAZARDOUS MATERIALS. Would the project:

a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?	☐	☐	☐	☑	☐
b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?	☐	☐	☐	☑	☐
c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?	☐	☐	☐	☑	☐
d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?	☐	☐	☐	☑	☐
e) For a project located within an airport land use plan area or, where such a plan has not been adopted, within 2 miles of a public airport or a public use airport, would the project result in a safety hazard for people residing or working in the project area?	☐	☐	☐	☑	☐
f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?	☐	☐	☐	☑	☐
g) Impair implementation of, or physically interfere with, an adopted emergency response plan or emergency evacuation plan?	☐	☐	☐	☑	☐
h) Expose people or structures to a significant risk of loss, injury, or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?	☐	☐	☐	☑	☐
SETTING

A Phase I Environmental Site Assessment (ESA) was prepared for the project area and is included in Appendix HAZ (PSI 2017b). The Phase I ESA identified Recognized Environmental Conditions (REC) associated with the railroad tracks present on the site and its historical use, and recommended preparation of a Phase II. The Phase II ESA (PSI 2017c), also included in Appendix HAZ, determined through soil sampling that most contaminants of concern were at the level of background conditions or were below hazardous waste criteria. One compound (benzo(a)pyrene) was detected just above the residential Environmental Screening Level (ESL); the Phase II ESA concluded that this limited impact does not appear to have the potential to preclude residential development of the site. In addition, trichloroethylene (TCE) and total petroleum hydrocarbon (TPH) concentrations found in soil vapor samples were above ESLs. Soil and groundwater samples did not have concentrations greater than the residential ESLs; so simple engineering control (vapor barrier) and/or possible limited excavation and resampling to confirm concentrations are below residential ESLs would be conducted.

ENVIRONMENTAL CHECKLIST AND DISCUSSION

Criteria a, b, c, d)

Analysis in the 2035 General Plan EIR

The potential for impacts from encountering hazardous waste and using hazardous materials for the project were analyzed in the 2035 General Plan EIR (Section 4.7.3, pages 4.7-16 through 4.7-31) and were determined to be less than significant. The analysis determined that the routine use and transport of hazardous materials, accidents involving release of hazardous materials, handling acutely hazardous materials near a school, and project construction on a known hazardous waste site would be addressed through regulatory compliance. Similarly, the TOD EIR noted that the TOD Strategy does not include land uses that emit harmful chemicals and that General Plan policies require safe and proper handling of hazardous materials.

New Information and Specific Effects of the Project

Construction (Hazardous Material Transport, Use, and Disposal)

Both the EPA and the US Department of Transportation (DOT) regulate the transport of hazardous waste and materials, including transport via highway. The EPA administers permitting, tracking, reporting, and operations requirements established by the Resource Conservation and Recovery Act. The DOT regulates the transportation of hazardous materials through the Hazardous Materials Transportation Act. This act includes requirements for container design and labeling, as well as for driver training. The established regulations are intended to track and manage the safe interstate transportation of hazardous materials and waste. Additionally, state and local agencies enforce the application of these acts and coordinate safety and mitigation responses in the case that accidents involving hazardous materials occur.

Project construction would include refueling and minor maintenance of construction equipment on-site, which could lead to minor fuel and oil spills. The use and handling of hazardous materials during construction would occur in accordance with applicable federal, state, and local laws, including California Occupational Health and Safety Administration (Cal/OSHA) requirements. All construction activities would be subject to the National Pollutant Discharge Elimination System (NPDES) permit process that requires the preparation of a stormwater pollution prevention plan.
4.0 ENVIRONMENTAL CHECKLIST

(SWPPP), which would be reviewed and approved by the San Francisco Bay Regional Water Quality Control Board. With compliance with existing regulations, the project would **not be more significant than described in the prior EIR**.

Operation (Hazardous Material Transport, Use, and Disposal)

Project operation would involve the routine transport, use, or disposal of hazardous materials in small quantities for residential use. All hazardous materials on the site would be handled in accordance with city and state regulations. Because any hazardous materials used for operations would be in small quantities, long-term impacts associated with handling, storing, and disposing of hazardous materials from project operation would **not be more significant than described in the prior EIR**.

Release of Hazardous Materials into the Environment

No activities associated with project operation as a residential development would result in reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment. Additionally, there are no schools within a quarter mile of the project sites (St. Leander School, which is the closest school to the sites, is approximately 1,600 feet to the southeast).

The 915 Antonio Street project site is on a list compiled pursuant to Section 65962.5 of the Government Code (the Cortese List) due to the former operations of the now-demolished Caterpillar facility. The 844 Alvarado Street site was not used by Caterpillar and was not affected by past Caterpillar operations (PSI 2018c; see **Appendix HAZ**). For the 915 Antonio Street site, the Phase II ESA concluded that TCE and TPH concentrations are above Environmental Screening Levels. To address this condition, the project would include installation of a vapor barrier. With implementation of this project design feature, the project would **not be more significant than described in the prior EIR**.

Criteria e, f

Analysis in the 2035 General Plan EIR

Potential impacts on airport land use plans and risks from proximity to airports were analyzed in the 2035 General Plan EIR (Section 4.7.3, pages 4.7-16 through 4.7-31) and were determined be **less than significant** because future projects in the TOD Strategy Area would be consistent with Airport Land Use Commission policies and would be at least 2.4 miles from the nearest airport (Oakland International), and because there are no private airstrips in San Leandro or within its sphere of influence.

New Information and Specific Effects of the Project

The project sites are not in the vicinity of an airport or private airstrip. Therefore, the effect of the project would **not be more significant than described in the prior EIR**.

Criterion g

Analysis in the 2035 General Plan EIR

The potential for projects to affect an adopted emergency response plan or emergency evacuation plan was analyzed in the 2035 General Plan EIR (Section 4.7.3, pages 4.7-16 through
4.7-31). The City determined that compliance with applicable federal, state, and local regulations and existing City plans (e.g., Hazard Plan) and General Plan policies such as Policy EH-6.2, SEMS Planning; Policy EH-6.3, Public Education and Awareness; and Policy EH-6.4, Drills, would ensure that future development would not interfere with the City’s emergency plans. This impact would be less than significant.

New Information and Specific Effects of the Project

The project would not physically block any roadways or otherwise directly affect emergency access to any area. As described in subsection 4.15, Transportation/Traffic, the project site plans were reviewed to determine the adequacy of circulation and to address access for emergency vehicles. The project was also reviewed by the San Leandro Fire and Police Departments, which determined that the site would have adequate fire access. Therefore, the effect of the project would not be more significant than described in the prior EIR.

Criterion h)

Analysis in the 2035 General Plan EIR

The potential for impacts from wildland fires was analyzed in the 2035 General Plan EIR (Section 4.7.3, pages 4.7-16 through 4.7-31). The City determined that this impact would be less than significant given that new development would generally occur in areas of low wildland fire risk and would not serve as an ignition source for wildland fires or provide additional fuel for fires, once burning. The evaluation found that compliance with applicable federal, state, and local laws and regulations would reduce impacts from wildland hazards.

New Information and Specific Effects of the Project

The project sites do not border wildlands and are not in a high fire hazard zone (Cal Fire 2008). Therefore, the effect of the project would not be more significant than described in the prior EIR.
4.8 HYDROLOGY AND WATER QUALITY

Would the project:

<table>
<thead>
<tr>
<th>Would the project:</th>
<th>Significant Impact</th>
<th>Less Than Significant or Less Than Significant with Mitigation Incorporated</th>
<th>No Impact</th>
<th>Analyzed in the Prior EIR</th>
<th>Substantially Mitigated by Uniformly Applicable Development Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Violate any water quality standards or waste discharge requirements?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner that would result in flooding on- or off-site?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>e) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>f) Otherwise substantially degrade water quality?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>g) Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>h) Place within a 100-year flood hazard area structures that would impede or redirect flood flows?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>i) Expose people or structures to a significant risk of loss, injury, or death involving flooding, including flooding as a result of a failure of a levee or dam?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>j) Inundation by seiche, tsunami, or mudflow?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>
ENVIRONMENTAL CHECKLIST AND DISCUSSION

Criterion a)

Analysis in the 2035 General Plan EIR

The project’s potential impacts on water quality were analyzed in the 2035 General Plan EIR (Section 4.8.3, pages 4.8-28 through 4.8-47) and were determined to be less than significant. The project would be required to comply with existing stormwater regulations and City General Plan policies, including Action EH-4.1.B, Municipal Regional Permit Implementation, under which the City requires projects to prepare a stormwater pollution prevention plan.

New Information and Specific Effects of the Project

Construction

Construction activities would include demolition, grading, and excavation, which could disturb and expose soils to water erosion, potentially increasing the amount of silt and debris entering downstream waterways. In addition, refueling and parking of construction equipment and other vehicles on-site could result in oil, grease, and other related pollutant leaks and spills that could enter runoff. However, pursuant to Chapter 7-12 of the San Leandro Municipal Code, the project would prepare erosion control and sedimentation control plans for submittal to the City Engineer prior to the start of project construction. Pursuant to Municipal Code Chapter 3-15, BMPs would be implemented to minimize stormwater discharges from the site during construction, including:

- Temporary erosion controls to stabilize all denuded areas until permanent erosion controls are established.
- Delineate with field markers clearing limits, easements, setbacks, sensitive or critical areas, buffer zones, trees, and drainage courses.
- Include specifications for construction, operation, and maintenance of erosion and sediment controls include inspection frequency; methods and schedule for grading, excavation, filling, clearing of vegetation, and storage and disposal of excavated or cleared material; vegetative cover and mulch, including methods and schedules for planting and fertilization; provisions for temporary and/or permanent irrigation.
- Perform clearing and earthmoving activities only during dry weather.
- Use sediment controls or filtration to remove sediment when dewatering and obtain all necessary permits.
- Protect all storm drain inlets in the vicinity of the site using sediment controls such as berms, fiber rolls, or filters.
- Trap sediment on-site, such as through use of sediment basins or traps, earthen dikes or berms, silt fences, check dams, soil blankets or mats, covers for soil stockpiles, etc.
- Divert on-site runoff around exposed areas; divert off-site runoff around the site (e.g., swales and dikes).
4.0 ENVIRONMENTAL CHECKLIST

- Protect adjacent properties and undisturbed areas from construction impacts using vegetative buffer strips, sediment barriers or filters, dikes, mulching, or other measures as appropriate.

- Limit construction access routes and stabilize designated access points.

- Do not allow cleaning, fueling, or maintaining vehicles on-site, except in a designated area where washwater is contained and treated.

- Store, handle, and dispose of construction materials/wastes properly to prevent contact with stormwater.

- Train and provide instruction to all construction workers regarding BMPs.

- Control and prevent the discharge of all potential pollutants, including pavement cutting wastes, paints, concrete, petroleum products, chemicals, washwater or sediments, rinse water from architectural copper, and non-stormwater discharges to storm drains and watercourses.

Compliance with the stormwater pollution prevention plan, coupled with the use of appropriate BMPs, would minimize potential water quality impacts during construction activities.

Operation

Post-construction impacts from development could affect drainage patterns and increase the overall amount of impervious surface, thus creating changes to stormwater flows and water quality. The project would connect to the City’s existing storm drainage and sewer facilities.

The Alameda County municipalities, the Alameda County Clean Water Program (C.3), and the Regional Water Quality Control Board (RWQCB) have adopted Low Impact Development (LID) guidelines for stormwater design to comply with the NPDES permit. Several LID design strategies were reviewed and evaluated for the project. LID measures considered were the use of permeable pavement, the dispersal of runoff to pervious areas, and the use of BMPs such as bioretention, bioswale surface treatment, and other similar facilities and controls. The proximity of the site to the San Leandro BART station and the density of the residential units qualifies the development as a C.3 Special Project C, and the project is eligible for LID treatment reduction credits. This allows for the use of non-LID measures such as mechanical treatment. The project’s proximity to San Leandro Creek and the area of impervious area replaced/added require hydromodification management through the use of detention systems to minimize potential sedimentation impacts on the creek. Hydromodification management is required if the project creates and/or replaces 1 acre or more of impervious surface, will increase impervious surface over pre-project conditions, and is located in a susceptible area.

A Storm Drainage Report was prepared for the project. As described in the Storm Drainage Report and exhibits (KPFF 2018; Appendix SDR), the proposed stormwater management facilities for the 915 Antonio Street site satisfy Alameda County Clean Water Program (ACWCP) C.3 and NPDES requirements for sizing of stormwater quality treatment facilities, hydromodification requirements for not exceeding existing peak stormwater runoff rates, and an adequately sized stormwater system. By incorporating stormwater quality features such as stormwater bioswales, mechanical treatment structures, porous pavement, and detention pipes, polluted stormwater runoff from impervious surfaces would be reduced or avoided. These features would be constructed throughout the site as near as possible to the impervious area they are treating. The introduction
of stormwater quality treatment enhancements would improve the quality of the stormwater runoff from the site and maintain the overall existing on-site drainage system patterns, while retaining the post-development peak discharge runoff rates to the predevelopment peak discharge rates for the 5-, 10-, 25-, and 100-year storms. The on-site storm sewer system would also adequately handle a 10-year design storm for a 100-year San Leandro Creek flood water surface level (KPFF 2018).

Because of construction permitting requirements, BMPs, and project stormwater treatment design features, which would be maintained for the life of the project, the effect of the project would not be more significant than described in the prior EIR.

Criterion b)

Analysis in the 2035 General Plan EIR

The potential impacts of development on groundwater supply were analyzed in the 2035 General Plan EIR (Section 4.8.3, pages 4.8-28 through 4.8-47) and were determined to be less than significant. As described in the EIR, compliance with existing regulations and General Plan policies, such as Policy OSC-7.4, Development Standards, would minimize impacts on aquifer volumes. Furthermore, development in the TOD Strategy Area would utilize municipal water sources, which do not include the use of groundwater. The TOD Strategy would not include new wells that would extract area groundwater. Moreover, most of the City’s TOD sites were previously developed, and redevelopment would not substantially increase impervious surface. The TOD EIR (San Leandro 2007b) similarly concluded that General Plan policies would reduce this potential impact to less than significant.

New Information and Specific Effects of the Project

As described above for criterion a, the project would use municipal water sources, which do not include groundwater. The project would not require the pumping of groundwater (aside from necessary construction period dewatering operations to clear excavations) and therefore would not deplete local groundwater supplies. Therefore, the effect of the project would not be more significant than described in the prior EIR.

Criteria c, d)

Analysis in the 2035 General Plan EIR

The potential impacts of the General Plan on drainage patterns as they affect erosion and flooding were analyzed in the 2035 General Plan EIR (Section 4.8.3, pages 4.8-28 through 4.8-47) and were determined to result in a less than significant impact. The impact evaluation determined that compliance with existing stormwater regulations and the City’s requirements for stormwater detention facilities to limit runoff would address potential erosion and flooding impacts.

Furthermore, as described in the TOD EIR (San Leandro 2007b), none of the projects envisioned under the TOD Strategy would require substantial alteration of existing drainage patterns that could cause substantial erosion or siltation. Although some TOD projects could affect San Leandro Creek, compliance with regulations and General Plan policies would ensure that erosion would not alter the creek alignment or increase sedimentation.
4.0 ENVIRONMENTAL CHECKLIST

New Information and Specific Effects of the Project

In compliance with existing water quality regulations, the project would be required to implement construction and post-construction BMPs to minimize erosion and sedimentation, as described above for criterion a. With these measures, as described in Appendix SDR, the project would not alter existing drainage patterns and would not result in substantial erosion, siltation, or on- or off-site flooding. Therefore, the effect of the project would **not be more significant than described in the prior EIR**.

Criterion e)

Analysis in the 2035 General Plan EIR

Potential impacts on existing stormwater drainage systems and from polluted runoff were analyzed in the 2035 General Plan EIR (Section 4.8.3, pages 4.8-28 through 4.8-47) and were determined to be **less than significant**. The impact analysis concluded that compliance with existing stormwater regulations and 2035 General Plan policies (e.g., Policy EH-4.1, Urban Runoff Control; Policy EH-4.4, Water Quality Monitoring) would address potential effects on drainage capacity and prevent additional sources of polluted runoff.

New Information and Specific Effects of the Project

Consistent with General Plan policies (Action EH-4.1.B, Municipal Regional Permit Implementation) and other applicable regulations, the project would be required to prepare and implement a SWPPP that outlines BMPs, as described above for criterion a. As described in Appendix SDR, the proposed stormwater management facilities satisfy ACCWP C.3 and NPDES requirements for sizing of stormwater quality treatment facilities, hydromodification requirements for not exceeding existing peak stormwater runoff rates, and an adequately sized stormwater system. In addition, the project would be required to pay impact fees to support the development of any needed improvements to the City storm drain system. Therefore, the effect of the project would **not be more significant than described in the prior EIR**.

Criterion f)

Analysis in the 2035 General Plan EIR

The 2035 General Plan EIR (Section 4.8.3, pages 4.8-28 through 4.8-47) determined that with regulatory measures and General Plan policies (e.g., Policy EH-4.11, Green Infrastructure), any other impacts on water quality would be **less than significant**.

New Information and Specific Effects of the Project

Consistent with General Plan policies (e.g., Action EH-4.1.B, Municipal Regional Permit Implementation) and other applicable regulations, the project includes appropriate measures to reduce or avoid impacts on water quality, as described above for criterion a and in Appendix SDR. Therefore, the effect of the project would **not be more significant than described in the prior EIR**.
Criteria g, h, i, j)

Analysis in the 2035 General Plan EIR

The 2035 General Plan EIR (Section 4.8.3, pages 4.8-28 through 4.8-47) evaluated potential impacts on the project from flooding; failure of dams or levees; and inundation by seiche, tsunami, or mudflow. Citing recent case law, the EIR stated that these checklist items are not CEQA impacts because they represent potential impacts of the environment on the project. CEQA only addresses the impacts of the project on the environment. Furthermore, any areas subject to mudflows are located east of I-580. Therefore, no further discussion is required.

The 2035 General Plan EIR also evaluated potential impacts from placing structures in a flood hazard area that could impede or redirect flood flows and determined that this impact would be less than significant. The EIR describes FEMA and City policies addressing construction in flood hazard areas (e.g., Policy EH-1.7, Reducing Flood Hazards) that would address potential impacts from flood waters.

New Information and Specific Effects of the Project

According to FEMA’s (2009) online web map, the project sites are in Flood Zone X, which is an area of minimal flood hazard (not a 100-year flood hazard area). Therefore, the effect of the project would not be more significant than described in the prior EIR.
4.0 ENVIRONMENTAL CHECKLIST

<table>
<thead>
<tr>
<th>Significant Impact</th>
<th>Less Than Significant or Less Than Significant with Mitigation Incorporated</th>
<th>No Impact</th>
<th>Analyzed in the Prior EIR</th>
<th>Substantially Mitigated by Uniformly Applicable Development Policies</th>
</tr>
</thead>
</table>

4.9 LAND USE AND PLANNING.

Would the project:

- a) Physically divide an established community?
- b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to, the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?
- c) Conflict with any applicable habitat conservation plan or natural community conservation plan?

ENVIRONMENTAL CHECKLIST AND DISCUSSION

Criterion a)

Analysis in the 2035 General Plan EIR

The 2035 General Plan EIR (Section 4.9.3, pages 4.9-8 through 4.9-18) (San Leandro 2016b) evaluated the potential land use impacts of planned development, including TOD. The City determined that future development would not introduce features that would create barriers that would physically divide the community, and that this impact would be **less than significant**. The project would be consistent with updated General Plan policies such as Policy LU-2.8, which encourages infill development to be aesthetically pleasing and compatible with existing homes. Similarly, the TOD Strategy EIR (San Leandro 2007b) found that TOD would be compatible with existing development and would not introduce new structures or infrastructure that could divide an established community.

New Information and Specific Effects of the Project

The project would develop existing infill properties that were previously developed but are currently primarily vacant. Portions of the area would continue to be physically divided by the Union Pacific Railroad tracks, overhead BART line, and San Leandro Creek and would not be further divided by the proposed infill project.

Compared to the existing primarily vacant sites, the project would enhance the streetscape with new development that would be consistent with the Zoning Code and the Development and Implementation Guidelines in the TOD Strategy to provide visual interest. The project would include a parklet facing Lola Street and improved landscaping and hardscaping along Alvarado Street. Twenty of the project's residential units would be ground-floor apartments with stoops facing Alvarado and Lola Streets, which would help establish the residential character of the site at the ground level. The project would also include a ground-floor café space near the intersection of Alvarado and Antonio Streets, which would provide additional street-level activity and visual...
interest. An access lane aligning with Antonio Street would bisect the 915 Antonio Street site, running between the north and south buildings, which would break up project massing. Taken together, these project elements would help to connect the project with the surrounding community by enlivening the project area with new uses and an appropriate design.

Because the project would not create any physical divisions, the effect of the project would not be more significant than described in the prior EIR.

Criterion b)

Analysis in the 2035 General Plan EIR

The 2035 General Plan EIR (Section 4.9.3, pages 4.9-8 through 4.9-18) evaluated whether future development, including TOD, would conflict with applicable land use plans and policies. The City determined that the plan was consistent with existing policies and that any impact would be less than significant. The City’s General Plan was updated in 2016 to incorporate the Downtown San Leandro TOD Strategy (San Leandro 2016a). It contains Policy T-1.4, Transit Oriented Development, which encourages high-quality development that maximizes transit use and reduces dependence on single-occupancy vehicles. It also includes Policy T-1.5, Land Use Strategies, which encourages high-density development along transit corridors. In turn, the City’s General Plan and TOD Strategy are consistent with regional plans that encourage identification of Priority Development Areas (PDA) for TOD.

New Information and Specific Effects of the Project

The project complies with the applicable regulations of the San Leandro General Plan and Zoning Code. As described in Section 3.0, Project Description, the project is consistent with the Transit-Oriented Development Mixed Use General Plan land use designation and the DA-4S zoning (see Table 3.0-2). Pursuant to the San Leandro Zoning Code, the City’s Zoning Enforcement Official reviews development plans in Downtown Area zones for general consistency with the Design Guidelines for the TOD Strategy that relate to design features. In addition, the Special Review Overlay provides for discretionary review to ensure an orderly transition from prior uses to new activities that are compatible with adjacent uses and will prevent development that may be detrimental to the community (San Leandro 2016a).

Overall, the project would be consistent with local land use plans, policies, and regulations stated in the Zoning Code and the General Plan that were established for the purposes of avoiding or mitigating an environmental effect. Therefore, the effect of the project would not be more significant than described in the prior EIR.

Criterion c)

Analysis in the 2035 General Plan EIR

Potential conflicts between the General Plan and habitat conservation plans were analyzed in the 2035 General Plan EIR (Section 4.9.3, pages 4.9-8 through 4.9-18). The City determined there would be no impact. This is consistent with the previous findings of the TOD Strategy EIR as the City is not within the plan area of any adopted habitat conservation plan or natural community conservation plan.
New Information and Specific Effects of the Project

To date, there is no adopted habitat conservation plan or natural community conservation plan applicable to the project area (CDFW 2017). Therefore, the effect of the project would **not be more significant than described in the prior EIR**.
4.10 MINERAL RESOURCES. Would the project:

a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?

<table>
<thead>
<tr>
<th>Significant Impact</th>
<th>Less Than Significant or Less Than Significant with Mitigation Incorporated</th>
<th>No Impact</th>
<th>Analyzed in the Prior EIR</th>
<th>Substantially Mitigated by Uniformly Applicable Development Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

b) Result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan, or other land use plan?

<table>
<thead>
<tr>
<th>Significant Impact</th>
<th>Less Than Significant or Less Than Significant with Mitigation Incorporated</th>
<th>No Impact</th>
<th>Analyzed in the Prior EIR</th>
<th>Substantially Mitigated by Uniformly Applicable Development Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

ENVIRONMENTAL CHECKLIST AND DISCUSSION

Criteria a, b)

Analysis in the 2035 General Plan EIR

As stated in the 2035 General Plan EIR (Section 4, page 4-1), because of past and current land uses, there would be no environmental impacts associated with loss of access to mineral resources and they are not addressed further. Furthermore, the TOD EIR determined there would be no impact because no mineral resources exist in the area.

New Information and Specific Effects of the Project

The only quarry in close proximity to San Leandro is just beyond the eastern city limit on Lake Chabot Road and ceased operation in the 1980s. While the quarry site contains additional rock resources, future quarrying activity is considered unlikely (San Leandro 2016b). Since there are no mineral resources in the vicinity of the project sites, the effect of the project would not be more significant than described in the prior EIR.
4.11 NOISE. Would the project:

<table>
<thead>
<tr>
<th></th>
<th>Significant Impact</th>
<th>Less Than Significant or Less Than Significant with Mitigation Incorporated</th>
<th>No Impact</th>
<th>Analyzed in the Prior EIR</th>
<th>Substantially Mitigated by Uniformly Applicable Development Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance or of applicable standards of other agencies?</td>
<td></td>
<td></td>
<td></td>
<td>![]</td>
</tr>
<tr>
<td>b</td>
<td>Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?</td>
<td></td>
<td></td>
<td>![]</td>
<td>![]</td>
</tr>
<tr>
<td>c</td>
<td>A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?</td>
<td></td>
<td></td>
<td>![]</td>
<td>![]</td>
</tr>
<tr>
<td>d</td>
<td>A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?</td>
<td></td>
<td></td>
<td>![]</td>
<td>![]</td>
</tr>
<tr>
<td>e</td>
<td>For a project located within an airport land use plan area or, where such a plan has not been adopted, within 2 miles of a public airport or a public use airport, would the project expose people residing or working in the project area to excessive noise levels?</td>
<td></td>
<td></td>
<td>![]</td>
<td>![]</td>
</tr>
<tr>
<td>f</td>
<td>For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?</td>
<td></td>
<td></td>
<td>![]</td>
<td>![]</td>
</tr>
</tbody>
</table>

SETTING

Fundamentals of sound were discussed in the Downtown San Leandro TOD Strategy EIR. All noise levels reported in this subsection are in terms of A-weighted levels (dBA) but may be expressed as dB, unless otherwise noted.

The project area is in an urban area with primarily residential uses to the west, north, and east, and commercial uses to the south, including an office building, a car dealership/service center, and parking lots. Existing sources of noise in the area include noise from the residential and commercial land uses, the BART tracks approximately 500 feet to the east of the project site, the Union Pacific Railroad tracks approximately 50 feet west of the project site, and traffic on area streets and highways.

Some land uses are considered more sensitive to noise than others. Typically, residences, schools, hospitals, and child-care and elder-care facilities are considered sensitive receptors for noise. The closest existing sensitive receptors to the project area are single-family homes adjacent to the 844 Alvarado Street site, and single-family homes across the Union Pacific Railroad tracks to the west...
of the 915 Antonio Street site. The closest school is St. Leander School, approximately 1,600 feet to the southeast.

CRITERIA FOR ACCEPTABLE NOISE EXPOSURE

The City of San Leandro addresses noise in the policies of the General Plan and in the provisions of the Municipal Code. General Plan Policy EH-7.1 and Chart 7-2 establish an L_{dn} or CNEL of 60 dB as the maximum normally acceptable exterior noise level for residential land uses. Action EH-7.1.A requires acoustical studies for projects that are likely to be exposed to noise levels that exceed the “normally acceptable” standard. General Plan Policy EH-7.2 establishes a maximum new residential construction interior noise level 45 dB L_{dn} (San Leandro 2016a). San Leandro Municipal Code Chapter 4-1, Article 11 (Noise) prohibits excessive or offensive noise but does not specify allowable decibel levels at the source of noise or at residential property lines.

ENVIRONMENTAL CHECKLIST AND DISCUSSION

Criterion a)

Analysis in the 2035 General Plan EIR

The potential for noise to exceed established standards was evaluated in the 2035 General Plan EIR (Section 4.10.3, pages 4.10-28 through 4.10-57). The City determined that operational noise would be less than significant given General Plan policies that discourage new uses that would increase noise near sensitive uses. For example, Policy EH-7.1, Noise Compatibility Table, requires the City to consider noise impacts when new development is proposed, and Policy EH-7.3, Residential Exterior Noise Standard, which sets a noise goal of 60 dB in residential areas. These impacts would also be addressed by Article 4-1-11 of the Municipal Code, which limits excessive construction (and other) noise. However, with increased traffic, ambient noise could exceed noise standards. The EIR evaluated potential mitigation, such as technological advances and widespread use of noise-attenuating features, but these measures were regarded as infeasible and this impact was determined **significant and unavoidable**.

New Information and Specific Effects of the Project

Impacts on Future Project Residents

The effect of existing noise on future project residents is considered an effect of the environment on the project; as such, it is not a CEQA consideration. However, it is a planning consideration for the City in determining project design and permit approvals. An acoustical study was completed for the project by Charles M. Salter Associates (2018), which is included as Appendix NOI. The study analyzed potential interior noise levels for the project residences with the minimum window and wall sound transmission class (STC) ratings required to meet interior noise standards and measures to reduce interior noise levels to below the levels defined by City General Plan Policy

2 The standard unit of sound amplitude measurement is the decibel (dB). The decibel scale is a logarithmic scale that describes the physical intensity of the pressure vibrations which make up any sound. L_{dn} is the Day-Night Average Level and is a 24-hour average, with a 10 dB “weighting” added to noise during the hours of 10:00 p.m. to 7:00 a.m. and to account for noise sensitivity in the nighttime. CNEL is the Community Noise Equivalent Level and is similar to L_{dn} with an additional weighting of 5 dB added in the evening hours between 7:00 p.m. and 10:00 p.m.
4.0 ENVIRONMENTAL CHECKLIST

EH-7.2, Residential Interior Noise Standard, which adopts the State indoor noise standard of 45 dB Ldn.

The acoustical study included 72-hour noise measurements at two locations near the project sites. Noise at location LT-1, at the residential property line across the railroad tracks to the west of the project sites, was measured at CNEL 75 dB. Noise at location LT-2, at the residential property line across the railroad tracks to the west of the project sites, was measured at CNEL 75 dB. The acoustical study did not estimate noise levels in exterior spaces of the project’s residential areas (e.g., private balconies). Given the high noise levels measured near the project sites, it is likely that exterior noise levels at some of the project’s exterior spaces would exceed the acceptable criteria defined by the General Plan. The impact of noise on sensitive receptors sited by the project would not be more significant than what has already been analyzed.

Long-Term Operational Noise

The primary sources of operational project noise would be heating, ventilation, and air conditioning (HVAC) systems, parking lot noise, and project-related traffic. The City has not established maximum noise levels for any of these noise sources. The potential impacts resulting from increases of existing ambient noise levels due to project long-term operational noise is addressed in criterion c, below. The impact resulting from exposure of existing sensitive receptors to or generation of noise levels in excess of standards established in the General Plan or noise ordinance would be less than significant and would not be more significant than the impacts that were evaluated in the prior EIR.

Criterion b)

Analysis in the 2035 General Plan EIR

Potential vibration impacts were evaluated in the 2035 General Plan EIR (Section 4.10.3, pages 4.10-28 through 4.10-57) and were found to be less than significant for both construction and operations. Construction vibration impacts would be minimized by avoiding the use of vibratory rollers and pile driving to the extent practicable and complying with Section 4-1-1115b of the Municipal Code, which restricts construction to the daytime hours. The project would also comply with Policy EH-7.9, Vibration Impacts, which limits vibration impacts through conditions of approval. The 2035 General Plan EIR determined that the project would not have sources of substantial vibration and that any operational vibration would be addressed by setbacks and use restrictions.

New Information and Specific Effects of the Project

Fundamentals of Environmental Groundborne Vibration

Groundborne vibration is measured as particle velocity in inches per second and in the United States is referenced as vibration decibels (VdB). Typical outdoor sources of perceptible groundborne vibration are construction equipment, steel-wheeled trains, and traffic on rough roads. Groundborne vibration is almost never annoying to people who are outdoors. Although the motion of the ground may be perceived, without the effects associated with the shaking of a building, the motion does not provoke the same adverse human reaction. In addition, the rumble noise that usually accompanies building vibration is perceptible only inside buildings (FTA 2006). As such, the range of interest is from approximately 50 VdB, which is the typical background vibration velocity level, to 100 VdB, which is the general threshold where minor damage can occur in fragile buildings.
In urban environments, such as the project area, sources of groundborne vibration include construction activities, light rail transit, and heavy trucks and buses. Construction activities can cause vibration that varies in intensity depending on several factors. The use of pile driving and vibratory compaction equipment typically generates the highest construction-related groundborne vibration levels.

Vibration generated by construction equipment spreads through the ground and diminishes in magnitude with increases in distance. The California Department of Transportation (Caltrans) (2013) recommends a standard of 0.2 inches per second peak particle velocity (PPV) with respect to the prevention of structural damage for normal buildings and a standard of 0.1 inches per second PPV for older or historical buildings.

Project Construction Activities

Project construction would have the potential to result in varying degrees of temporary groundborne vibration, depending on the specific construction equipment used and the operations involved. Table 4.11-1 displays vibration levels for typical construction equipment, based on application of Caltrans's recommended standard.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Peak Particle Velocity at 25 Feet (inches per second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact Pile Driver Upper Range</td>
<td>1.518</td>
</tr>
<tr>
<td>Impact Pile Driver Lower Range</td>
<td>0.644</td>
</tr>
<tr>
<td>Vibratory (Sonic) Pile Driver Upper Range</td>
<td>0.734</td>
</tr>
<tr>
<td>Vibratory (Sonic) Driver Lower Range</td>
<td>0.170</td>
</tr>
<tr>
<td>Large Vibratory Roller</td>
<td>0.210</td>
</tr>
<tr>
<td>Large Bulldozer</td>
<td>0.089</td>
</tr>
<tr>
<td>Caisson Drilling</td>
<td>0.089</td>
</tr>
<tr>
<td>Loaded Truck</td>
<td>0.076</td>
</tr>
<tr>
<td>Jackhammer</td>
<td>0.035</td>
</tr>
<tr>
<td>Small Bulldozer/Tractor</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Source: FTA 2006; Caltrans 2013

The nearest structure to the project area is the Holy Ghost Chapel, I.D.E.S. Hall at 790 Antonio Street, on the south property line of the 844 Alvarado Street project site. According to the cultural resources report completed for the project (Michael Baker 2018b), the building was constructed in 1889 and is listed as a California Point of Historical Interest and a San Leandro Historic Resource. To protect the structural integrity of this historical resource, the groundborne vibration threshold of 0.1 inches per second PPV for fragile buildings would apply (Caltrans 2013, p. 38).

Construction activities on the 844 Alvarado Street project site would not be expected to involve the use of pile drivers, large vibratory rollers, or large bulldozers. However, smaller vibratory rollers could be used to compact soil, gravel, or pavement near the existing structure. In addition, the subgrade parking structure and building foundation at the 915 Antonio Street project site (approximately 72 feet from the Holy Ghost Chapel, I.D.E.S. Hall) could require the use of deep
foundations (piles). A shown in Table 4.11-1, vibration levels for pile drivers could be as high as 1.518 inches per second PPV at 25 feet. To ensure vibrations do not exceed 0.1 inches per second PPV, all pile driving activity would have to take place at least 205 feet away from the Holy Ghost Chapel, I.D.E.S. Hall.\(^3\)

The project would be required to comply with Mitigation Measures NOI-1a and NOI-1b from the TOD Strategy EIR. These measures require developers to reduce vibration from construction activities by avoiding pile driving and avoiding vibratory rollers and tampers near sensitive areas. In accordance with these mitigation measures, vibratory rollers would be used in static mode only (no vibrations) when within 25 feet of the Holy Ghost Chapel, I.D.E.S. Hall or any other any existing off-site structure. No vibratory or impact pile driving activity shall be conducted within 205 feet of the Holy Ghost Chapel, I.D.E.S. Hall. Based on the vibration levels presented in Table 4.11-1, ground vibration generated by heavy-duty equipment, other than pile drivers or vibratory rollers, would not exceed 0.09 inches per second PPV at 25 feet. Therefore, with implementation of these measures, the use of construction equipment would not result in a groundborne vibration velocity level above 0.1 inches per second PPV; predicted vibration levels at the nearest off-site structures would not exceed recommended criteria. Impacts resulting from construction-related groundborne vibration would be less than significant with mitigation incorporated and would not be more significant than the impacts that were evaluated in the prior EIR.

Project Operation

The effect of existing sources of vibration on future project residents is considered an effect of the environment on the project; as such, it is not a CEQA consideration. However, it is a planning consideration for the City in determining project design and permit approvals. The acoustical study completed for the project by Charles M. Salter Associates (2018) measured vibration levels for trains passing by on the Union Pacific Railroad and BART tracks and concluded:

Measured train vibration levels [from the UPRR tracks] did not exceed the FTA general assessment criteria for infrequent events. Measured BART vibration levels did not exceed the FTA general assessment criteria for frequent events. It should be noted that vibration levels in this report were measured at-grade. The FTA document identifies that vibration will change as it enters the building. However, the effect of the building on vibration is dependent on the structural design. This should be discussed with the structural engineer so as to reduce the potential for amplification inside the building.

Long-term operation of the project would not include any source of vibration that could affect existing sensitive receptors and the impact would not be more significant than what has already been analyzed. Criterion c)

Analysis in the 2035 General Plan EIR

Permanent noise increases were evaluated in the 2035 General Plan EIR and with the increase in traffic from future development, ambient noise could exceed noise standards. The EIR evaluated potential mitigation, such as technological advances and widespread use of noise-attenuating features, but these measures were regarded as infeasible and this impact was determined significant and unavoidable.

\(^3\) For pile driving, the vibration level at any distance can be estimated from the 25-foot reference level by: PPV = PPV\(_{25 \text{feet}}\) x (25/D)\(^n\) where D is the distance from the pile driving equipment and n = 1.3 for soils consisting of most sands, sandy clays, silty clays, gravel, silts, and weathered rock (typical of the project site).
New Information and Specific Effects of the Project

Traffic Noise

The potential for the project to permanently increase traffic noise was assessed under the following scenarios: baseline (existing conditions plus approved projects) and baseline plus project. Traffic noise levels were calculated using the Federal Highway Administration (FHWA) roadway noise prediction model (FHWA-RD-77-108) based on California vehicle reference noise emissions factors and traffic data obtained from the transportation impact study prepared for the project. Additional input data included vehicle speeds and roadway widths. Predicted noise levels were calculated at a distance of 100 feet from the near-travel-lane centerline. A 3 dBA increase is the minimum audible difference perceptible to the average person outdoors. An increase in traffic noise of more than 3.0 dBA would be a significant impact. Table 4.11-2 shows the predicted change in traffic noise with the project. As shown in the table, the maximum increase in traffic noise would be 2.2 dBA on Alvarado Street between the project site and Davis Street and would not result in a substantial increase in ambient noise levels.

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>Baseline ADT</th>
<th>Baseline CNEL @ 100 Feet from Roadway Centerline (dBA)</th>
<th>Baseline plus Project ADT</th>
<th>Baseline plus Project CNEL @ 100 Feet from Roadway Centerline (dBA)</th>
<th>Change (dBA)</th>
<th>Significant Impact?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alvarado Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project to Davis Street</td>
<td>1,782</td>
<td>46.8</td>
<td>2,916</td>
<td>49.0</td>
<td>2.2</td>
<td>No</td>
</tr>
<tr>
<td>Davis Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-880 to Preda Street</td>
<td>25,542</td>
<td>62.1</td>
<td>26,505</td>
<td>62.3</td>
<td>0.1</td>
<td>No</td>
</tr>
<tr>
<td>Preda Street to Alvarado Street</td>
<td>23,076</td>
<td>60.1</td>
<td>24,048</td>
<td>60.3</td>
<td>0.2</td>
<td>No</td>
</tr>
<tr>
<td>Alvarado Street to San Leandro Boulevard</td>
<td>25,470</td>
<td>60.6</td>
<td>26,055</td>
<td>60.7</td>
<td>0.1</td>
<td>No</td>
</tr>
<tr>
<td>San Leandro Boulevard to East 14th Street</td>
<td>15,822</td>
<td>56.5</td>
<td>16,191</td>
<td>56.6</td>
<td>0.1</td>
<td>No</td>
</tr>
</tbody>
</table>

Source: Based on traffic data in the transportation impact study prepared by CHS Consulting Group (2018). Traffic noise levels were calculated using the FHWA roadway noise prediction model. Refer to Appendix NOI for traffic noise modeling assumptions and results.

Notes: ADT = average daily trips; dBA = A-weighted decibels; CNEL = Community Noise Equivalent Level

Parking Lot Noise

The primary parking for the 915 Antonio Street development would be in an enclosed subgrade parking garage. Typical parking noise includes engine sounds, car doors slamming, car alarms, tire noise, and people conversing. These noises would be substantially reduced by the exterior walls of the parking garage and would not substantially increase noise levels at nearby existing residential buildings.

Building Mechanical Equipment

HVAC equipment is often mounted on rooftops, located on the ground, or placed within mechanical rooms. The noise sources could take the form of fans, pumps, air compressors, chillers,
or cooling towers. Precise details of HVAC equipment, including future location, sizing, and any sound enclosures, are unknown at the time of this analysis. Therefore, for purposes of this analysis, a conservative level of $80 \text{ dB L}_{\text{max}}$ at 3 feet was assumed to represent HVAC-related noise with a location on the building roof approximately centered.\(^4\) Noise produced near the ground propagates outward in a hemispherical pattern and diminishes (attenuates) at a rate of approximately 6 dB for every doubling of distance. The closest off-site residences across Alvarado Street to the northeast, approximately 250 feet from a center rooftop HVAC system location, would be exposed to a noise level of $42 \text{ dB L}_{\text{max}}$ generated by HVAC equipment. This noise level is below the City’s land use compatibility standard of 45 dBA CNEL for residential uses and would not result in a substantial increase in ambient noise.

Conclusion

The project would not result in a substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project due to traffic noise, parking lot noise, or building mechanical system noise. The impact would **not be more significant than the impacts that were evaluated in the prior EIR**.

Criterion d)

Analysis in the 2035 General Plan EIR

Temporary noise impacts of construction were evaluated in the 2035 General Plan EIR (Section 4.10.3, pages 4.10-28 through 4.10-57). As described above, compliance with Municipal Code Section 4-1-1115b would limit construction to daytime hours; however, the 2035 General Plan EIR determined that construction of future developments, including TOD, could result in substantial temporary or periodic noise increases that would be **potentially significant**.

The 2035 General Plan EIR determined that Mitigation Measure NOI-4 would reduce future temporary or periodic construction noise and would require the City to adopt construction noise measures as a Standard Conditions of Approval (a Uniformly Applicable Development Policy):

Mitigation Measure NOI-4: The City of San Leandro shall adopt the following measures as Standard Conditions of Approval or Construction Development Standards for new construction in the city. The Standard Conditions of Approval/Construction Development Standards shall include an exception that states that the Engineering & Transportation Director or his/her designee may waive individual measures upon individual written request from an Applicant after City review.

- Construction activities shall be restricted to the daytime hours between 7:00 a.m. and 7:00 p.m. on weekdays, or between 8:00 a.m. and 7:00 p.m. on Sunday and Saturday.

- Prior to the start of construction activities, the construction contractor shall:
 - Maintain and tune all proposed equipment in accordance with the manufacturer’s recommendations to minimize noise emission.

\(^4\) L_{max}: The maximum instantaneous noise level experienced during a given period of time.
4.0 INFILL CHECKLIST

- Inspect all proposed equipment and fit all equipment with properly operating mufflers, air intake silencers, and engine shrouds that are no less effective than as originally equipped by the manufacturer.
- Post a sign, clearly visible at the site, with a contact name and telephone number of the City of San Leandro’s authorized representative to respond in the event of a noise complaint.
- Place stationary construction equipment and material delivery in loading and unloading areas as far as practicable from the residences.
- Limit unnecessary engine idling to the extent feasible.
- Use smart back-up alarms, which automatically adjust the alarm level based on the background noise level, or switch off back-up alarms and replace with human spotters.
- Use low-noise emission equipment.
- Limit use of public address systems.
- Minimize grade surface irregularities on construction sites.

New Information and Specific Effects of the Project

Construction activities would consist of demolition of the existing building, site preparation (including grading), removal of existing road surfaces, and construction of new structures. Construction would require excavation and off-hauling of materials as well as use of heavy equipment such as bulldozers, scrapers, backhoes, excavators, loaders, compactors, rollers, and a paving machine. These activities would be a source of noise and vibration that could affect off-site noise-sensitive receptors. The City’s Noise Ordinance (Municipal Code Section 4-1-1115(b)) states, “Construction work or related activity which is adjacent to or across a street or right-of-way from a residential use, except between the hours of 7 a.m. and 7 p.m. on weekdays, or between 8 a.m. and 7 p.m. on Sunday and Saturday. No such construction is permitted on Federal holidays.”

With application of Standard Conditions of Approval in accordance with 2035 General Plan EIR Mitigation Measure NOI-4, impacts related to a substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project would not be more significant than the impacts that were evaluated in the prior EIR.

Criterion e)

Analysis in the 2035 General Plan EIR

Potential impacts from airport noise were evaluated in the 2035 General Plan EIR (Section 4.10.3, pages 4.10-28 through 4.10-57) and were determined to result in a less than significant impact because the City is not located within the 65 CNE L noise contours of Oakland International Airport. Similarly, the TOD EIR found that no flight paths cross the TOD Strategy Area and no portion of the area overlaps with an airport land use plan.
New Information and Specific Effects of the Project

Because no changes have been made to the Oakland International Airport Land Use Compatibility Plan that would affect the TOD Strategy Area, the effects of the project would not be more significant than the impacts that were evaluated in the prior EIR.

Criterion f)

Analysis in the 2035 General Plan EIR

Potential impacts from private airstrip noise were evaluated in the 2035 General Plan EIR (Section 4.10.3, pages 4.10-28 through 4.10-57) and were determined to result in a less than significant impact because of the distance from the project to any airstrip or helipad. Similarly, the TOD EIR determined that downtown San Leandro is not in the vicinity of any private airstrips.

New Information and Specific Effects of the Project

There are no private airstrips within 10 miles of the project site (FAA 2017). Therefore, the effect of the project would not be more significant than the impacts that were evaluated in the prior EIR.
4.12 POPULATION AND HOUSING. Would the project:

a) Induce substantial population growth in an area, either directly (e.g., by proposing new homes and businesses) or indirectly (e.g., through extension of roads or other infrastructure)?	☐	☐	☘	☘
b) Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?	☐	☘	☘	☘
c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?	☐	☘	☘	☘

ENVIRONMENTAL CHECKLIST AND DISCUSSION

Criterion a)

Analysis in the 2035 General Plan EIR

Population growth impacts were analyzed in the 2035 General Plan EIR (Section 4.11.3, pages 4.11-6 through 4.11-13). The City determined that the development envisioned in the General Plan has been adequately planned and would occur primarily in Priority Development Areas (PDA), would occur in an organized manner, and would be adequately served by infrastructure. The General Plan’s Economic Development Element includes goals, policies, and actions to encourage economic development and a healthy jobs-housing balance. The 2035 General Plan EIR found that this impact would be less than significant.

New Information and Specific Effects of the Project

The project would create 687 housing units on the 915 Antonio Street site, a transit-proximate site designated for higher-density uses. As shown in Table 3.0-2, the DA-4S zoning for the site allows a maximum of 100 units per acre on parcels of at least 10,000 square feet, plus a density bonus of 20 percent if the average unit size is less than 750 square feet. The proposed density is 120 dwelling units per acre, the average proposed unit size is 731 square feet, and the site is approximately 5.7 acres. Therefore, the project is eligible for the bonus and the proposed density is consistent with zoning. No residential units would be developed on the 844 Alvarado Street site. The project is consistent with the 2035 General Plan and the number of dwelling units on the 915 Antonio Street site is consistent with what was assumed in the TOD Strategy EIR. Thus, the project would not be more significant than the impacts that were evaluated in the prior EIR.
4.0 ENVIRONMENTAL CHECKLIST

Criterion b)

Analysis in the 2035 General Plan EIR

Displacement of housing was analyzed in the 2035 General Plan EIR (Section 4.11.3, pages 4.11-6 through 4.11-13) and the City determined this impact would be less than significant. The City’s Housing Element would help preserve the existing housing stock, promote development of mixed-unit types including affordable housing, and encourage the development of new housing opportunities, ensuring that adequate housing would be preserved and replaced.

New Information and Specific Effects of the Project

The project site does not contain any residences and would therefore not displace any residents. Therefore, this impact would not be more significant than the impacts that were evaluated in the prior EIR.

Criterion c)

Analysis in the 2035 General Plan EIR

Displacement of people was analyzed in the 2035 General Plan EIR (Section 4.11.3, pages 4.11-6 through 4.11-13) and this potential impact of future development was determined to be less than significant. As described above, the City’s Housing Element would ensure adequate housing stock. Similarly, the TOD EIR concluded that General Plan policies would reduce this potential impact to less than significant.

New Information and Specific Effects of the Project

The proposed project would not displace people through the loss of housing. Therefore, the effect of the project would not be more significant than the impacts that were evaluated in the prior EIR.
4.0 INFILL CHECKLIST

<table>
<thead>
<tr>
<th>Significant Impact</th>
<th>Less Than Significant or Less Than Significant with Mitigation Incorporated</th>
<th>No Impact</th>
<th>Analyzed in the Prior EIR</th>
<th>Substantially Mitigated by Uniformly Applicable Development Policies</th>
</tr>
</thead>
</table>

4.13 PUBLIC SERVICES. Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times, or other performance objectives for any of the following public services:

- a) Fire protection?
- b) Police protection?
- c) Schools?
- d) Parks?
- e) Other public facilities?

ENVIRONMENTAL CHECKLIST AND DISCUSSION

Criterion a, b, c, d, e)

Analysis in the 2035 General Plan EIR

The 2035 General Plan EIR (Sections 4.12.1.3 through 4.12.5.3, pages 4.12-5 through 4.12-42) evaluated potential impacts from construction of new or upgraded public service facilities to serve new development. The City determined that the proposed plan could result in additional calls but would not require new or upgraded fire protection facilities. Future development would be required to comply with building codes, the California Health and Safety Code, and General Plan policies, including Policy CSF-1.5, Review of Development Plans, which requires police and fire department review of development plans. The EIR concluded that this impact, as well as potential effects on parks and libraries, would be less than significant.

Similarly, the TOD Strategy EIR determined that future TOD could adversely affect Alameda County Fire Department (ACFD), San Leandro Police Department, parks, and libraries, but that the City’s General Plan policies, such as those requiring fire department review of development applications (Policy CSF-1.5, Review of Development Plans), would address these impacts.

However, the TOD EIR found that impacts on schools would be significant and unavoidable. In 2007, the City projected that future enrollment could exceed the capacity of several schools in the San Leandro Unified School District (SLUSD) and stated that new development would be required to pay school impact fees and that the City and SLUSD would work together to develop additional schools. The TOD EIR identified potential classroom space deficits as a significant impact, and required mitigation; however, the impact remained significant and unavoidable because of the speculative nature of future population growth and new school construction. The City’s revised impact assessment for schools from the 2035 General Plan EIR is incorporated into the project-specific evaluation presented below.

New Information and Specific Effects of the Project

Fire Protection
The ACFD, through a contract for services, provides fire protection service to the City of San Leandro, which includes fire suppression, hazardous materials mitigation, paramedic response, urban search and rescue (including in the waters of San Francisco Bay), fire prevention, and public education services (San Leandro 2016b). The ACFD maintains 29 fire stations, including five facilities in San Leandro. The closest fire station to the project site is ACFD Station 9 at 450 Estudillo Avenue. There is also a ACFD training facility adjacent to the northern boundary of the 915 Antonio Street project site.

While the project would increase demand for fire protection services, the number of dwelling units on the 915 Antonio Street site complies with zoning and is consistent with the San Leandro General Plan and TOD Strategy. The project buildings on the 915 Antonio Street site and the 844 Alvarado Street site would be required to comply with basic building designs and standards for commercial and residential buildings as mandated by Title 24 of the California Code of Regulations and the San Leandro Fire Code.

Police Protection

The SLPD provides police services in the San Leandro city limits and the sphere of influence. The department is located at 901 East 14th Street. The San Leandro City Council has approved a capital expenditure to renovate the existing police building and City offices in the Civic Center (where City Hall and the Police Station are located) to expand police operations services. These renovations are primarily interior and do not involve construction of a new building.

While the project would increase demand for SLPD services, the number of dwelling units on the 915 Antonio Street site complies with zoning and is consistent with what was assumed in the TOD Strategy EIR and the San Leandro General Plan. The project would be required to comply with General Plan Policy CSF-1.5, requiring police and fire department review of development proposals to ensure that sufficient provisions for emergency access and response are made, fire code requirements are satisfied, and adequate levels of service can be provided.

Schools

Using the SLUSD’s current student generation rate of 0.35 per housing unit (San Leandro 2016a), the project would generate 235 students. While the project would increase demand for school capacity, the number of dwelling units on the 915 Antonio Street site complies with zoning and is consistent with what was assumed in the TOD Strategy EIR and the San Leandro General Plan. Furthermore, the project would be required to pay school impact fees. According to California Government Code Section 65995(h), the payment of statutory mitigation fees is “deemed to be full and complete mitigation of the impacts of any legislative or adjudicative act, or both, involving, but not limited to, the planning, use, or development of real property, or any change in governmental organization or reorganization...on the provision of adequate school facilities.”

Libraries

The San Leandro Public Library System provides library services in the city. It operates the main library branch, located approximately 0.6 miles from the project site at 300 Estudillo Avenue, as well as four smaller branches throughout the city. There are current plans to construct a new modern facility at the existing Mulford-Marina Branch location and to replace the South Branch Library (San Leandro 2016b).

While the project would increase demand for library services, the number of dwelling units on the 915 Antonio Street site complies with zoning and is consistent with what was assumed in the TOD Strategy EIR and the San Leandro General Plan. The San Leandro Public Library System is primarily funded by County property taxes, into which the project would pay (San Leandro 2016b).
Conclusion

The project is consistent with the density of development assumed for the sites in the General Plan. The project would also comply with all applicable 2035 General Plan policies intended to reduce the impacts of future development on public services. Therefore, the effect of the project would not be more significant than the impacts that were evaluated in the prior EIR.
4.14 RECREATION.

a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?

- [] Significant Impact
- [] Less Than Significant or Less Than Significant with Mitigation Incorporated
- [] No Impact
- [x] Analyzed in the Prior EIR
- [] Substantially Mitigated by Uniformly Applicable Development Policies

b) Does the project include recreational facilities, or require the construction or expansion of recreational facilities, which might have an adverse physical effect on the environment?

- [] Significant Impact
- [] Less Than Significant or Less Than Significant with Mitigation Incorporated
- [] No Impact
- [x] Analyzed in the Prior EIR
- [] Substantially Mitigated by Uniformly Applicable Development Policies

ENVIRONMENTAL CHECKLIST AND DISCUSSION

Criteria a, b)

Analysis in the 2035 General Plan EIR

Potential impacts from physical deterioration of existing parks and construction of new or altered park facilities were analyzed in the 2035 General Plan EIR (Section 4.12.4.3, pages 4.12-27 through 4.12-38) and were found to be less than significant. The City determined that updated General Plan policies, including Policy OSC-2.3, Park Dedication, which requires an impact fee, would address the needs generated by infill development and new subdivisions. The General Plan also includes Goal LU-4, Mitigation of Public Facility Impacts, and related policies (LU-4.1, 4.3, and 4.4) which promote the development of new parks, and Policy 6.14, Downtown Open Space.

New Information and Specific Effects of the Project

As discussed in subsection 4.12, Population and Housing, the number of dwelling units on the 915 Antonio Street site complies with zoning and is consistent with what was assumed in the TOD Strategy EIR and the San Leandro General Plan.

As described in Section 3.0, Project Description, the project would provide 122,788 square feet of open space on the 915 Antonio Street site, including a publicly accessible parklet facing Lola Street, common space for residents, internal lanes accessible to emergency vehicles, and private stoops and balconies. The north building courtyards would include a lap pool and spa, and both the north and south building courtyards would be landscaped and include lounge, play, and barbecue areas. The north and south buildings would also have rooftop outdoor terrace areas. On the west side of the complex, there would be a playground area and dog park. These features are considered part of the project and their potential environmental effects have therefore been assessed throughout this document.

The project would be required to pay park facilities development impact fees, consistent with the San Leandro Municipal Code. Chapter 7-13, Park Facilities Development Impact Fee, describes the requirements for the payment of fees for park and recreational facilities and sets standards for...
the use of fee revenues. Therefore, the effect of the project would **not be more significant than** the impacts that were evaluated in the prior EIR.
4.15 TRANSPORTATION/TRAFFIC. Would the project:

- a) Cause an increase in traffic that is substantial in relation to the existing traffic load and capacity of the street system (i.e., result in a substantial increase in either the number of vehicle trips, the volume-to-capacity ratio on roads, or congestion at intersections)?

- b) Exceed, either individually or cumulatively, a level of service standard established by the county congestion management agency for designated roads or highways?

- c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?

- d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?

- e) Result in inadequate emergency access?

- f) Conflict with adopted policies, plans, or programs supporting alternative transportation (e.g., bus turnouts, bicycle racks)?

<table>
<thead>
<tr>
<th>Significant Impact</th>
<th>Less Than Significant or Less Than Significant with Mitigation Incorporated</th>
<th>No Impact</th>
<th>Analyzed in the Prior EIR</th>
<th>Substantially Mitigated by Uniformly Applicable Development Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>✗</td>
<td></td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENVIRONMENTAL CHECKLIST AND DISCUSSION

Criteria a, b)

Analysis in the 2035 General Plan EIR

Potential impacts from increases in traffic and on roadway capacity were analyzed in the 2035 General Plan EIR (Section 4.13.3, pages 4.13-35 through 4.13-72). The City determined that future development would increase traffic and would have a **significant** impact on local intersections and freeway segments. General Plan Policy T-5.2, Evaluating Development Impacts, includes actions to establish LOS E as the standard for intersections within PDAs until the City adopts new standards based on vehicle miles traveled. General Plan EIR mitigation included Mitigation Measure TRAF-1A for improving intersections to LOS D and TRAF-1B to improve freeway segment performance. However, both impacts were determined **significant and unavoidable** after adoption of these mitigation measures because the City could not guarantee improvements at
all affected intersections and the mitigation needed for freeway improvements would not be under the City’s control.

Similarly, the TOD EIR assumed implementation of a series of roadway and intersection improvements outlined in the TOD Strategy that would reduce traffic impacts to less than significant at all but one intersection. The EIR identified a significant impact at the intersection of MacArthur Boulevard and Estudillo Avenue and Mitigation Measure Trans-1. However, even with mitigation, this impact was significant and unavoidable.

New Information and Specific Effects of the Project

CHS Consulting Group (2018) prepared a transportation impact study (TIS) for the project, which is included as Appendix TRA. As described in the TIS, due to the proposed relocation of the FAAASL to new facilities at 844 Alvarado Street (across the street from the current facilities) and FAAASL operations remaining unaltered, future traffic patterns would remain the same as existing conditions. Furthermore, the majority of FAAASL operations occur during the evening (6:00 to 10:00 p.m.), after the PM peak hour, and would therefore have no impact on peak-hour traffic conditions. As such, the remainder of this evaluation addresses only the development of the 915 Antonio Street site.

The TIS evaluates the extent to which the development of the 915 Antonio Street site would affect the multimodal transportation network in the project area under four analysis scenarios:

1. Existing Conditions
2. Existing plus Approved Project (Baseline) Conditions
3. Baseline plus Project Conditions
4. Cumulative (2040) Conditions (includes proposed project)

For purposes of assessing transportation conditions in the project area, study intersections were evaluated using the 2000 Highway Capacity Manual operations methodology, consistent with the General Plan Update EIR, the TOD Strategy EIR, and recent development studies in the city. Project vehicle trips were estimated based on the vehicular trip generation rates used in the TOD Strategy EIR for the land use categories of BART Area Residential Condominium/Townhouse and BART Area Retail. Cumulative traffic volumes were developed using the ACTC Countywide Travel Demand Model and existing traffic counts at study intersections, consistent with the methodology used in the 2035 General Plan EIR. Trip distribution was based on existing traffic patterns in the project area. All of these assumptions and methodologies were reviewed and approved by City of San Leandro staff (see Appendix TRA). The following seven intersections were analyzed:

1. Davis Street/Alvarado Street
2. Davis Street/San Leandro Boulevard
3. Davis Street/Callan Avenue at East 14th Street
4. Estudillo Avenue/East 14th Street
5. Davis Street/Preda Street
6. Davis Street/I-880 Northbound Ramp
7. Davis Street/I-880 Southbound Ramp
Existing Conditions

Level of Service Analysis

Traffic operational LOS conditions were evaluated for traffic during weekday AM (7:00 to 9:00 AM) and PM (4:00 to 6:00 PM) peak periods. Level of service is a qualitative description of an intersection’s performance based on the average delay per vehicle. Intersection LOS ranges from LOS A, which indicates free flow conditions with minimal delays, to LOS F, which indicates congested conditions with considerably long delays. The City of San Leandro considers LOS D to be the minimum acceptable service level for intersections located outside of PDAs. For intersections located in PDAs, the acceptable level of service is LOS E. It should also be noted that Davis Street and East 14th Street are under Caltrans jurisdiction.

Table 4.15-1 presents the LOS and delay analysis results for the study intersections for the weekday AM and PM peak hours under Existing Conditions. Detailed count data and calculations are available in Appendix TRA. All of the study intersections are operating at LOS D or better under Existing Conditions.

Table 4.15-1

EXISTING CONDITIONS: PEAK-HOUR INTERSECTION LEVEL OF SERVICE RESULTS

<table>
<thead>
<tr>
<th>ID</th>
<th>Intersection</th>
<th>Control Type</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Delay</td>
<td>LOS</td>
</tr>
<tr>
<td>1</td>
<td>Davis/Alvarado Signal</td>
<td>Signal</td>
<td>21.3</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>Davis/San Leandro Signal</td>
<td>Signal</td>
<td>40.5</td>
<td>D</td>
</tr>
<tr>
<td>3</td>
<td>Davis/Callan at East 14th Signal</td>
<td>Signal</td>
<td>23.5</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>Estudillo/East 14th Signal</td>
<td>Signal</td>
<td>17.7</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>Davis/Preda Signal</td>
<td>Signal</td>
<td>15.9</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>Davis/I-880 Northbound Signal</td>
<td>Signal</td>
<td>17.7</td>
<td>B</td>
</tr>
<tr>
<td>7</td>
<td>Davis/I-880 Southbound Signal</td>
<td>Signal</td>
<td>20.8</td>
<td>C</td>
</tr>
</tbody>
</table>

Source: CHS 2018

Note: Delay reported as seconds per vehicle. For signalized intersections, a weighted average delay and level of service (LOS) based on all intersection approaches are reported.

Queue length analysis was also analyzed in the TIS. Under Existing Conditions, the 95th percentile queue lengths for the eastbound and northbound left-turn pockets at the Davis Street/Callan Avenue/East 14th Street intersection and for the southbound left-turn pocket at the Davis Street/I-880 Southbound interchange already exceed storage capacity during the AM peak hour. During the PM peak hour, the 95th percentile queue lengths already exceed storage capacity under Existing Conditions at the following:

- Southbound left-turn pocket at the Davis Street/Alvarado Street intersection
- Eastbound left- and right-turn pockets at the Davis Street/Callan Avenue/East 14th Street intersection
- Northbound right-turn pocket at the Davis Street/I-880 Northbound interchange
Transit Network

One bus route is within a quarter-mile radius from the project site. Alameda-Contra Costa (AC) Transit Route 89 is a two-way loop service connecting major destinations throughout San Leandro and provides transfer connections to additional local and regional transit services. A Route 89 bus stop is located at the intersection of Davis Street and Alvarado Street. AC Transit Routes 1, 10, 75, 85, and 801 can be accessed farther away at the San Leandro BART station, approximately 0.4 miles south of the project site. The BART commuter rail system connects the project area to destinations throughout the East Bay, San Francisco, and San Mateo County.

Pedestrian Conditions

Pedestrian amenities in the area generally include sidewalks, crosswalks, curb ramps, pedestrian signals, and streetscape and landscape amenities (benches, tree-lined buffers, planters, bulb-outs, street lighting, etc.). Sidewalks in the area are generally between 6 and 10 feet wide. The TIS includes existing peak-hour study area intersection pedestrian crossing data (see Appendix TRA). The highest concentration of pedestrian activity in the study area was observed at the intersection of Davis Street and Alvarado Street during the AM peak hour (between 7:30 and 8:30 AM) and PM peak hour (4:00 to 6:00 PM).

Bicycle Conditions

Bicycle facilities include bicycle lanes, trails, and paths, as well as bicycle parking, bicycle lockers, and showers for cyclists. On-street bicycle facilities include Class I bikeways (bicycle paths with exclusive right-of-way for use by bicyclists or pedestrians), Class II bikeways (bicycle lanes striped within the paved areas of roadways and established for the preferential use of bicycles), and Class III bikeways (signed bicycle routes that allow bicycles to share travel lanes with vehicles).

In proximity to the project site, bikeways include a Class III bicycle route along Alvarado Street and Class II bicycle lanes along Davis Street, San Leandro Boulevard, and Alvarado Street. There are currently no Class I bikeways in the project vicinity. There are plans for future bikeways in the area. The TIS includes existing study area bicycle count data (see Appendix TRA). Study intersections generally have a low level of existing bicycle traffic, with the highest levels of bicycle traffic at the intersection of Davis Street and San Leandro Boulevard.

Existing plus Approved Project (Baseline) Conditions

The TIS analyzes Baseline Conditions, defined as the addition of traffic from nearby City-approved and pending developments within a quarter mile of the project site to Existing Conditions (see Appendix TRA).

Level of Service Analysis

Table 4.15-2 presents the LOS and delay analysis results for the study intersections for the weekday AM and PM peak hours under Baseline Conditions. Detailed count data and calculations are available in Appendix TRA. Although average delays increase slightly at the study intersections compared to Existing Conditions, all study intersections are expected to maintain the same level of service as under Existing Conditions.
TABLE 4.15-2

Baseline Conditions: Peak-Hour Intersection Level of Service Results

<table>
<thead>
<tr>
<th>ID</th>
<th>Intersection</th>
<th>Control Type</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Delay</td>
<td>LOS</td>
</tr>
<tr>
<td>1</td>
<td>Davis/Alvarado</td>
<td>Signal</td>
<td>21.3</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>Davis/San Leandro</td>
<td>Signal</td>
<td>40.6</td>
<td>D</td>
</tr>
<tr>
<td>3</td>
<td>Davis/Callan at East 14th</td>
<td>Signal</td>
<td>23.6</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>Estudillo/East 14th</td>
<td>Signal</td>
<td>17.7</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>Davis/Preda</td>
<td>Signal</td>
<td>15.9</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>Davis/I-880 Northbound</td>
<td>Signal</td>
<td>17.7</td>
<td>B</td>
</tr>
<tr>
<td>7</td>
<td>Davis/I-880 Southbound</td>
<td>Signal</td>
<td>20.8</td>
<td>C</td>
</tr>
</tbody>
</table>

Source: CHS 2018

Note: Delay reported as seconds per vehicle. For signalized intersections, a weighted average delay and level of service (LOS) based on all intersection approaches are reported.

With regard to queue length, conditions would be similar to Existing Conditions. The 95th percentile queue lengths at the eastbound and northbound left-turn pockets at the Davis Street/Callan Avenue/East 14th Street intersection would continue to exceed storage capacity during the AM peak hour. During the PM peak hour, the 95th percentile queue lengths would continue to exceed storage capacity under Baseline Conditions at the following:

- Southbound left-turn pocket at the Davis Street/Alvarado Street intersection
- Eastbound left- and right-turn pockets at the Davis Street/San Leandro Boulevard intersection
- Northbound left-turn pocket at the Davis Street/Callan Avenue/East 14th Street intersection
- Northbound right-turn pocket at the Davis Street/I-880 Northbound interchange

Baseline plus Project Conditions

The TIS analysis of Baseline plus Project Conditions is similar to Baseline Conditions, but with the added traffic from the project (see Appendix TRA).

Project Trip Generation

As shown in Table 4.15-3, the project is expected to generate 2,145 daily vehicle trips on a typical weekday, including 159 AM peak-hour vehicle trips (28 inbound, 131 outbound) and 187 PM peak-hour vehicle trips (125 inbound, 62 outbound) based on the TOD Strategy trip generation rates.
Table 4.15-3
PROPOSED PROJECT VEHICLE TRIP GENERATION

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Trip Rate</th>
<th>Size</th>
<th>Daily Trips</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IB</td>
<td>OB</td>
</tr>
<tr>
<td>Residential Condo/Townhouse</td>
<td>3.09</td>
<td>687 DU</td>
<td>2,123</td>
<td>27</td>
<td>131</td>
</tr>
<tr>
<td>Café</td>
<td>39.72</td>
<td>545 gsf</td>
<td>22</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>2,145</td>
<td>28</td>
<td>131</td>
</tr>
</tbody>
</table>

Source: CHS 2018
Notes: DU = dwelling unit; gsf = gross square feet; IB = inbound; OB = outbound

As noted above, due to the relocation of the proposed FAASL facilities across the street from the current facilities along Alvarado Street, and the maintenance of FAASL’s existing enrollment and operations schedule, existing traffic patterns related to the FAASL are not expected to change. Therefore, the traffic generated by the FAASL has already been accounted for in the existing traffic counts; no additional trip generation estimates related to the FAASL facilities are required.

Project Trip Distribution and Assignment

The following trip distribution patterns were used as the basis for assigning project trips to local streets and study intersections in the study area, based on review of existing conditions traffic counts and knowledge of the study area:

- Northbound I-880: 26 percent
- Southbound I-880: 26 percent
- Davis Street (west of I-880): 6 percent
- Alvarado Street (south of Davis Street): 4 percent
- San Leandro Boulevard (north of Davis Street): 10 percent
- San Leandro Boulevard (south of Davis Street): 6 percent
- East 14th Street (north of Davis Street): 4 percent
- East 14th Street (south of Davis Street): 4 percent
- Callan Avenue: 4 percent
- Estudillo Avenue: 10 percent

Level of Service Analysis

Table 4.15-4 presents the LOS and delay analysis results for the study intersections for the weekday AM and PM peak hours under Baseline plus Project Conditions. Detailed count data and calculations are available in Appendix TRA. Although average delays increase slightly at the study intersections compared to Existing Conditions, most study intersections are expected to maintain the same level of service as under Existing Conditions. During the PM peak hour, the Davis Street/Alvarado Street intersection would change from LOS B under Baseline Conditions to LOS C under Baseline plus Project Conditions, but it would still operate within acceptable City standards.
TABLE 4.15-4

BASELINE PLUS PROJECT CONDITIONS: PEAK-HOUR INTERSECTION LEVEL OF SERVICE RESULTS

<table>
<thead>
<tr>
<th>ID</th>
<th>Intersection</th>
<th>Control Type</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Delay</td>
<td>LOS</td>
</tr>
<tr>
<td>1</td>
<td>Davis/Alvarado</td>
<td>Signal</td>
<td>23.2</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>Davis/San Leandro</td>
<td>Signal</td>
<td>41.1</td>
<td>D</td>
</tr>
<tr>
<td>3</td>
<td>Davis/Callon at East 14th</td>
<td>Signal</td>
<td>23.8</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>Estudillo/East 14th</td>
<td>Signal</td>
<td>17.4</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>Davis/Preda</td>
<td>Signal</td>
<td>15.6</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>Davis/I-880 Northbound</td>
<td>Signal</td>
<td>17.7</td>
<td>B</td>
</tr>
<tr>
<td>7</td>
<td>Davis/I-880 Southbound</td>
<td>Signal</td>
<td>21.0</td>
<td>C</td>
</tr>
</tbody>
</table>

Source: CHS 2018

Note: Delay reported as seconds per vehicle. For signalized intersections, a weighted average delay and level of service (LOS) based on all intersection approaches are reported.

With regard to queue length, 95th percentile queue lengths would increase slightly at the study intersections compared to Baseline Conditions. Most study intersections are expected to maintain a 95th percentile queue length that is within the existing turn pocket storage capacity. For turn pockets that already exceed capacity under Baseline Conditions, the project would contribute less than a car length to the 95th percentile queue length, with two exceptions. The project would contribute an additional 44 feet or approximately two car lengths to the southbound left-turn pocket at the Davis Street/Alvarado Street intersection during the AM peak hour, exceeding the existing storage capacity (110 feet) by 22 feet. During the PM peak hour, added project traffic would increase the 95th percentile queue length by less than one car length (12 feet) to 135 feet to a turn pocket already over capacity in Baseline Conditions. Therefore, the TIS recommended that the southbound left-turn pocket at the intersection of Davis Street and Alvarado Street be extended by approximately 30 feet (110 to 140 feet) to accommodate traffic volumes under Baseline plus Project Conditions. This improvement is included as part of the project.

Turn Lane Warrant Analysis

As part of the Baseline plus Project Conditions analysis, a left-turn lane warrant analysis was conducted for the proposed project main driveway entrance at the intersection of Alvarado Street and Antonio Street. For purposes of the study and to estimate a conservative worst-case scenario, it was assumed all inbound project vehicle trips would enter the site by making a left turn at the main driveway entrance at the intersection of Alvarado Street and Antonio Street. The project would generate 28 inbound vehicle trips during the AM peak hour and 125 inbound trips during the PM peak hour. During the AM peak hour, there would be 206 vehicles traveling northbound (approach traffic volume) and 164 vehicles traveling southbound (opposing traffic volume) at the project’s driveway, which would not exceed the threshold of 824 opposing vehicles to warrant a left-turn lane at the project driveway.

Similarly, during the PM peak hour, there would be 198 vehicles traveling northbound (approach traffic volume) and 206 vehicles traveling southbound (opposing traffic volume), which would not exceed the threshold of 786 opposing vehicles to warrant a left-turn lane at the project driveway. As a result, a northbound left-turn pocket would not be warranted based on total volumes on Alvarado Street.
Cumulative Conditions

This section details expected traffic conditions at the study intersections under Cumulative Conditions. This scenario is defined as future traffic conditions in 2040 attributable to citywide buildout development that includes project trips, given that the proposed project is consistent with the TOD Strategy Area. Traffic volumes under Cumulative Conditions are based on the Alameda County Transportation Commission (ACTC) 2040 travel demand model and existing traffic counts at study intersections. The TIS includes growth factors derived from linear traffic growth projected in the ACTC 2040 travel demand model that were applied to the existing (2018) traffic volumes collected at the seven study intersections.

It should also be noted that 2018 vehicular traffic turning movements collected for the TIS were in some cases lower than the existing traffic volumes used to estimate year 2035 intersection volumes in the City’s 2035 General Plan Update EIR. As a result, some 2040 intersection turning movements estimated from the ACTC model were lower than comparable 2035 EIR intersection turning movements. To estimate a worst-case (conservative) scenario, the TIS adjusted such 2040 turning movements to match the EIR. Additionally, other calculated 2040 turning movements were higher than comparable 2035 turning movements in the EIR. Consequently, 2040 cumulative conditions level of service and delay results as presented in the TIS differ from the 2035 results presented in the San Leandro 2035 General Plan Update EIR.

Level of Service Analysis

Table 4.15-5 presents the LOS and delay analysis results for the study intersections for the weekday AM and PM peak hours under Cumulative Conditions. Detailed count data and calculations are available in Appendix TRA. Some of the study intersections would no longer operate within City level of service standards of LOS D or better under Cumulative Conditions. The Davis Street/San Leandro Boulevard intersection would operate at LOS E during the AM peak hour and LOS F during the PM peak hour. The Davis Street/Callan Avenue/East 14th Street intersection would operate at LOS F during the AM peak hour and LOS E during the PM peak hour. All other study intersections would continue to operate within City LOS standards of LOS D or better under Cumulative Conditions. These service levels are due primarily to background traffic growth in Cumulative Conditions, as the project would contribute up to 268 peak-hour trips at the Davis Street/San Leandro Boulevard intersection and 88 peak hour trips at the Davis Street/Callan Avenue/East 14th Street intersection.

<table>
<thead>
<tr>
<th>ID</th>
<th>Intersection</th>
<th>Control Type</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Delay</td>
<td>LOS</td>
</tr>
<tr>
<td>1</td>
<td>Davis/Alvarado</td>
<td>Signal</td>
<td>22.5</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>Davis/San Leandro</td>
<td>Signal</td>
<td>79.8</td>
<td>E</td>
</tr>
<tr>
<td>3</td>
<td>Davis/Callan at East 14th</td>
<td>Signal</td>
<td>84.4</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>Estudillo/East 14th</td>
<td>Signal</td>
<td>18.5</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>Davis/Preda</td>
<td>Signal</td>
<td>15.7</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>Davis/I-880 Northbound</td>
<td>Signal</td>
<td>16.0</td>
<td>B</td>
</tr>
<tr>
<td>7</td>
<td>Davis/I-880 Southbound</td>
<td>Signal</td>
<td>21.8</td>
<td>C</td>
</tr>
</tbody>
</table>

Source: CHS 2018

Note: Delay reported as seconds per vehicle. For signalized intersections, a weighted average delay and level of service (LOS) based on all intersection approaches are reported.
Under Cumulative Conditions, the 95th percentile queue lengths at the southbound left-turn pocket at the Davis Street/Alvarado Street intersection and the eastbound and northbound left-turn pockets at the Davis Street/Callan Avenue/East 14th Street intersection would continue to exceed storage capacity during the AM peak hour. During the PM peak hour, the 95th percentile queue lengths would continue to exceed storage capacity under Cumulative Conditions at the following:

- Southbound left-turn pocket at Davis Street/Alvarado Street intersection
- Eastbound left- and right-turn pockets at the Davis Street/San Leandro Boulevard intersection
- Northbound left-turn pocket at the Davis Street/Callan Avenue/East 14th Street intersection
- Northbound right-turn pocket at the Davis Street/I-880 Northbound interchange

Under Cumulative Conditions, the 95th percentile queue lengths would exceed storage capacity at new locations, all of which are attributable to traffic growth from the San Leandro 2035 General Plan. During the AM peak hour, the eastbound and northbound left-turn pockets at the Davis Street/ San Leandro Boulevard intersection and the southbound left-turn pocket at the Estudillo Avenue/ East 14th Street intersection would exceed existing storage capacity. During the PM peak hour, the southbound right-turn pocket at the Davis Street/San Leandro Boulevard intersection, the eastbound left- and right-turn pockets at the Davis Street/Callan Avenue/East 14th Street intersection, and the southbound left-turn pocket at the Estudillo Avenue/East 14th Street intersection would exceed existing storage capacity under Cumulative Conditions.

Conclusion

As discussed in subsection 4.9, Land Use and Planning, the project is consistent with what was assumed in the TOD Strategy EIR and the San Leandro 2035 General Plan. The Davis Street/San Leandro Boulevard intersection would operate at LOS E (AM peak hour) and LOS F (PM peak hour) and the Davis/Callan at East 14th intersection would operate at LOS F during the AM peak hour and LOS E during the PM peak hour. For intersections located in PDAs, the acceptable level of service is LOS E; therefore, cumulative traffic impacts at the Davis Street/San Leandro Boulevard intersection would be significant in the PM peak hour and the Davis/Callan at East 14th intersection would be significant in the AM peak hour. However, as described in the TIS, this change in LOS would result primarily from background traffic growth. As shown in Tables 4.15-2 and 4.15-4, the project’s contribution to delays at these intersections from the baseline condition to the baseline plus project condition would be 0.5 second or less in the AM or PM peak hour. Because the project would only contribute up to 268 peak hour trips at the Davis/San Leandro intersection, the project’s impact would be less than cumulatively considerable. Furthermore, pursuant to SB 743 and as discussed in the 2035 General Plan EIR, once the new guidelines are adopted, LOS metrics may no longer be considered as a sole basis for traffic impacts under CEQA. Therefore, the effect of the project would not be more significant than the impacts that were evaluated in the prior EIR.
Criterion c)

Analysis in the 2035 General Plan EIR

Potential impacts on airports were evaluated in the 2035 General Plan EIR (Section 4.13.3, pages 4.13-35 through 4.13-72) and were determined to be less than significant. As described in the EIR, commercial and private aircraft associated with Oakland International Airport, approximately 2.4 miles to the northwest, would not cross the TOD Strategy Area and would be at sufficient altitude to avoid any potential impacts associated with glare or obstructions. The EIR noted that no other known potential impacts on air traffic would occur.

New Information and Specific Effects of the Project

The project area is approximately 2.4 miles away from Oakland International Airport and is not in the vicinity of a private airstrip. Therefore, the effect of the project would not be more significant than the impacts that were evaluated in the prior EIR.

Criteria d, e)

Analysis in the 2035 General Plan EIR

Potential safety impacts from design features were evaluated in the 2035 General Plan EIR (Section 4.13.3, pages 4.13-35 through 4.13-72) and were found to be less than significant. The 2035 General Plan EIR states that future projects would be reviewed pursuant to the City’s Standard Plans and would be required to comply with General Plan policies such as Policy T-6.4, Coordination with Urban Design Improvements, and Policy T-7.6, Safe Visibility. Similarly, the TOD EIR determined that the roadway modifications included in projects pursuant to the TOD Strategy would not create hazards due to design features or incompatible uses and that roadway modification would be reviewed by emergency service providers in San Leandro to ensure adequate emergency access.

New Information and Specific Effects of the Project

The proposed 915 Antonio Street site plan was reviewed in the TIS to determine the adequacy of circulation and to address access for emergency vehicles. Internal roadways and drive aisles would be of sufficient width to accommodate two-way traffic operations for circulating vehicles, delivery trucks, and emergency vehicles, as well as vehicular parking maneuvers to/from the perpendicular parking spaces. The drive aisle dimensions would be consistent with the requirements of Section 4-1720 of the San Leandro Zoning Code. The ground-level parking garage would be accessed via the project’s central driveway, with 20-foot-wide entries along the north building’s southern frontage and along the south building’s northern frontage. The below-grade parking garage would be accessible via 20-foot-wide ramps at the north building’s northern frontage along Lola Street, and at the south building’s southern frontage along the 26-foot-wide vehicular and emergency vehicle access drive.

The proposed 915 Antonio Street site driveways, on Alvarado and Lola Streets, would provide adequate sight distance to ensure existing vehicles would be within view of pedestrians on the adjacent sidewalk. However, vehicles parking along Alvarado Street and street trees planted along the project’s driveways may affect the visibility of exiting vehicles. Therefore, in accordance with Section 4-1728 of the San Leandro Zoning Code, the project would be required to ensure there are no obstructions of a height between 3 feet and 7 feet within 10 feet in either direction of the driveways at the street property line. This would include implementing parking restrictions.
within at least 10 feet of the project’s driveways and maintaining at least a 7-foot clearance between the ground and the lower branches of any tree within 10 feet of the project’s driveways.

Therefore, with implementation of applicable regulations, the effect of the project would **not be more significant than the impacts that were evaluated in the prior EIR**.

Criterion f)

Analysis in the 2035 General Plan EIR

Potential conflicts with alternative transportation were analyzed in the 2035 General Plan EIR (Section 4.13.3, pages 4.13-35 through 4.13-72) and were determined to be **less than significant**. The 2035 General Plan EIR concluded that because of the City’s bike and pedestrian policies (e.g., Policy T-3.1, Citywide Bikeway System; Policy T-3.6, Pedestrian Environment) and plans (e.g., Bike and Ped Master Plan), future development would support alternative transportation and would not result in policy conflicts or decreases in performance and or safety, and any impacts would be less than significant. The 2007 TOD EIR concluded that the TOD Strategy’s proposed land uses and transit access improvements would increase demand for transit and pedestrian and bicycle facilities.

New Information and Specific Effects of the Project

The project proposes a primarily residential development within a half mile of the San Leandro BART station, which would be consistent with the goals and objectives of the TOD Strategy. As described in subsection 4.9, Land Use and Planning, the project would enhance the streetscape with a parklet facing Lola Street and improved landscaping and hardscaping along Alvarado Street. The project would also include 520 bicycle storage spaces and would be consistent with City transit policies (e.g., Policy T-3.5, Accommodation of Bicycles and Pedestrians) and strategies and supportive of alternative transportation. Thus, the project’s impact on transit policies would **not be more significant than the impacts that were evaluated in the prior EIR**.
4.16 UTILITIES AND SERVICE SYSTEMS

Would the project:

<table>
<thead>
<tr>
<th></th>
<th>Significant Impact</th>
<th>Less Than Significant or Less Than Significant with Mitigation Incorporated</th>
<th>No Impact</th>
<th>Analyzed in the Prior EIR</th>
<th>Substantially Mitigated by Uniformly Applicable Development Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENVIRONMENTAL CHECKLIST AND DISCUSSION

Criteria a, e)

Analysis in the 2035 General Plan EIR

Potential impacts on wastewater treatment and capacity were analyzed in the 2035 General Plan EIR (Section 4.14.2.3, pages 4.14-28 through 4.14-37) and were determined to be **less than significant**. The EIR determined that projected wastewater generated from buildout, including TOD, would not exceed wastewater treatment requirements. Similarly, the TOD EIR determined...
that the adoption of General Plan policies designed to maintain adequate capacity at the San Leandro wastewater treatment plant would address any potential impacts by ensuring adequate wastewater facilities and treatment. The 2035 General Plan EIR also found that the wastewater generated from General Plan buildout would not exceed wastewater treatment plant capacity or permit limits and would not result in a determination of insufficient capacity by the wastewater treatment providers.

New Information and Specific Effects of the Project

The project would be located in the City's sewer service area, where wastewater is collected and treated by the City-owned and operated system (a portion of San Leandro is instead serviced by the Oro Loma Sanitary District). Wastewater from the project area is treated by the San Leandro Water Pollution Control Plant (SLWPCP), at the west end of Davis Street. The SLWPCP is permitted by the RWQCB to provide secondary treatment of up to 7.6 million gallons per day (mgd) average dry weather flow (ADWF). In 2010, the actual ADWF from the plant was 4.9 mgd. Thus, the SLWPCP had 2.7 mgd of unused permitted dry weather flow capacity in 2010 (San Leandro 2016b). As described in criterion b), the proposed project’s peak sewer flow rate would be approximately 112,000 gallons per day, which is substantially below the remaining SLWPCP permitted capacity. The proposed density of the project is consistent with the zoning and General Plan land use designation and the project’s wastewater flows would not be substantially higher than what was evaluated in the EIR. Furthermore, the 2035 General Plan EIR (2016b) determined that projected wastewater flows would not exceed wastewater treatment requirements or capacity. Therefore, this impact would **not be more significant than the impacts that were evaluated in the prior EIR**.

Criterion b)

Analysis in the 2035 General Plan EIR

Potential impacts from construction of new or expanded water or wastewater treatment facilities were analyzed in the 2035 General Plan EIR (Section 4.14.1.3, pages 4.14-13 through 4.14-21; Section 4.14.2.3, pages 4.14-28 through 4.14-37) and were determined to be **less than significant**. General Plan buildout would be served with existing or planned water supplies and construction of new distribution infrastructure for new development would not result in significant effects. The 2035 General Plan EIR also determined that no additional wastewater facility improvements would be needed beyond those currently planned.

The TOD EIR included Mitigation Measure G3 for the City’s continued sewer replacement program and other capital improvements necessary to accommodate planned future growth. As described in the TOD EIR, the City would evaluate the impact of TOD on sewer infrastructure and develop an estimated cost and schedule. Each new TOD project would be required to pay an impact fee to fund needed improvements.

New Information and Specific Effects of the Project

As shown in **Table 4.16-1**, the City projected a peak flow rate of 112,000 gallons per day. The relocation of the existing FAASL to 844 Alvarado Street would not substantially change sewer demand as compared to existing conditions; therefore, it is not included in the table.
Project Sewer Demand Analysis

<table>
<thead>
<tr>
<th>Use</th>
<th>Quantity</th>
<th>Unit</th>
<th>Average Sewer Demand (gpd/unit)</th>
<th>Sewer Flow Rate Analysis (gpd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>687</td>
<td>Dwelling Units</td>
<td>160</td>
<td>109,920</td>
</tr>
<tr>
<td>Café</td>
<td>100</td>
<td>Customers</td>
<td>6</td>
<td>600</td>
</tr>
<tr>
<td>Public Lavatory</td>
<td>4</td>
<td>Lavatories</td>
<td>250</td>
<td>1,000</td>
</tr>
<tr>
<td>Co-Working/Office</td>
<td>3,000</td>
<td>Square Feet</td>
<td>0.093</td>
<td>279</td>
</tr>
<tr>
<td>Pool</td>
<td>20</td>
<td>People</td>
<td>10</td>
<td>200</td>
</tr>
<tr>
<td>Total Flow (rounded)</td>
<td></td>
<td></td>
<td>112,000</td>
<td></td>
</tr>
</tbody>
</table>

Source: Woodard & Curran 2019
Note: gpd = gallons per day

Project-generated sewage would be handled by the City’s existing sewer system and treated at the SLWPCP, as described in the response to criteria a, e. The project would be required to pay impact fees and would therefore contribute its fair share toward any needed improvements. As a result, the impact of the project would **not be more significant than the impacts that were evaluated in the prior EIR**.

Criterion c)

Analysis in the 2035 General Plan EIR

Potential impacts from stormwater infrastructure construction were analyzed in the 2035 General Plan EIR (Section 4.14.4.3, pages 4.14-60 through 4.14-64). The City determined that implementation of source control and regulatory measures would limit runoff from new developments such that the City would not need new or expanded stormwater drainage facilities. This impact would be **less than significant**.

New Information and Specific Effects of the Project

A Stormwater Control Plan and a Storm Drainage Report were prepared for the project. As described in the Storm Drainage Report (KPFF 2018; Appendix SDR), the Alameda County municipalities, the Alameda County Clean Water Program (C.3), and the Regional Water Quality Control Board (RWQCB) have adopted low impact development (LID) guidelines for stormwater design to comply with the National Pollutant Discharge Elimination System Permit. Several LID design strategies were reviewed and evaluated for the project including permeable pavement, pervious areas, and other best management practices such as bioretention and bioswales. The proximity of the project sites to the San Leandro BART station and the density of the residential units qualify the development as a C.3 Special Project C, eligible for LID treatment reduction credits (see Appendix HYD). This allows for the use of non-LID measures such as mechanical treatment. The sites’ proximity to San Leandro Creek and the amount of impervious surface replaced/added requires hydromodification or detention systems to minimize erosion potential in the creek. Hydromodification is required if the project would create and/or replace 1 acre or more of impervious surface, increases impervious surface over pre-project conditions, or is located in a susceptible area.
Stormwater collection begins with the roof leaders and courtyard drains connecting to the diversion structures on-site. The structures would be sized to allow stormwater to drain directly into a mechanical treatment structure. After treatment, the stormwater would drain directly into the storm sewer system or one of the two detention pipes on-site to convey the stormwater out to the public main. In the event of a rainfall event yielding greater flow than the design capacity, the diversion structure would bypass the treatment structure and direct flows into the detention chambers or storm drain system.

Installation of this on-site drainage system would ensure that stormwater facilities would accommodate the project and that stormwater from the project would be treated appropriately. Therefore, the effect of the project would not be more significant than the impacts that were evaluated in the prior EIR.

Criterion d)

Analysis in the 2035 General Plan EIR

Potential impacts on water supply entitlements were analyzed in the 2035 General Plan EIR (Section 4.14.1.3, pages 4.14-13 through 4.14-21) and were determined to be less than significant. General Plan buildout would not result in water shortages in normal years, and East Bay Municipal Utility District’s (EBMUD) water conservation programs and supplemental supply plans would address dry years and new entitlements would not be needed.

Similarly, the 2007 TOD EIR found that implementation of the TOD Strategy would increase water demand and would necessitate conservation and reclamation programs. The TOD EIR concluded that adoption of General Plan policies as part of the TOD Strategy would ensure that water conservation measures would be required of each new development and that cumulative demand impacts would be less than significant.

New Information and Specific Effects of the Project

Pursuant to Sections 10910–10915 of the California Water Code, because the project would have more than 500 units, it meets the threshold requiring an assessment of water supply availability. The project would be within EBMUD’s service boundary. The project’s Water Supply Assessment (WSA) was completed by EBMUD (2018) and is included as Appendix WSA.

The WSA estimated the project’s operational water demand to be approximately 125,300 gallons per day (gpd), compared to approximately 450 gpd under existing conditions. The WSA determined that the water demand for the project is accounted for in EBMUD’s projected future water demand and was approved in a meeting of the EBMUD board held on July 10, 2018. In addition, the project would be required to comply with the City’s water conservation requirements. Therefore, the effect of the project would not be more significant than the impacts that were evaluated in the prior EIR.

Criteria f, g)

Analysis in the 2035 General Plan EIR

Potential impacts on landfill capacity and solid waste regulations were analyzed in the 2035 General Plan EIR (Section 4.14.3.3, pages 4.14-42 through 4.14-47) and were determined to be less than significant. Development projects would be required to comply with existing recycling regulations. Diversion of solid waste would address potential impacts on landfill disposal capacity.
Furthermore, the General Plan’s policies and strategies (e.g., Policy OSC-7.1, Recycling, and related actions) would promote recycling and conservation, which would ensure adequate waste collection and disposal facilities and that General Plan buildout, including TOD, would be consistent with solid waste statutes and regulations.

New Information and Specific Effects of the Project

The updated 2035 General Plan EIR (San Leandro 2016b) noted that 93 percent of the city’s solid waste went to four landfills, as summarized in Table 4.16-2.

<table>
<thead>
<tr>
<th>Facility</th>
<th>Daily Capacity (Tons/Day)</th>
<th>Estimated Closure Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altamont</td>
<td>11,500</td>
<td>2025</td>
</tr>
<tr>
<td>Forward Sanitary</td>
<td>8,668</td>
<td>2020</td>
</tr>
<tr>
<td>Portrero Hills</td>
<td>4,330</td>
<td>2048</td>
</tr>
<tr>
<td>Vasco Road</td>
<td>2,250</td>
<td>2019</td>
</tr>
</tbody>
</table>

If one or more of the four landfills listed in Table 4.16-2 were to become unavailable in the future, it is likely the city’s solid waste volume could be increased at one or more of the other landfills that already serve the city (San Leandro 2016b).

As discussed in subsection 4.12, Population and Housing, the number of dwelling units on the 915 Antonio Street site complies with zoning and is consistent with the assumptions in the San Leandro 2035 General Plan. A private trash hauler (ACI) has provided a will-serve letter. In addition, the project would comply with all federal, state, and local regulations related to solid waste, including recycling, composting, and other practices. Therefore, solid waste generated by the project would be consistent with projections in the planning-level documents and would be accommodated by existing landfill capacity. The effect of the project would not be more significant than the impacts that were evaluated in the prior EIR.
4.0 ENVIRONMENTAL CHECKLIST

4.17 MANDATORY FINDINGS OF SIGNIFICANCE

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Analysis in the 2035 General Plan EIR</th>
<th>No Impact</th>
<th>Analyzed in the Prior EIR</th>
<th>Less Than Significant or Mitigation Incorporated</th>
<th>Substantially Mitigated by Uniformly Applicable Development Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of rare or endangered plants or animals, or eliminate important examples of the major periods of California history or prehistory?</td>
<td>☐ ☐ ☒ ☒ ☒</td>
<td>☒</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b) Does the project have impacts that are individually limited, but cumulatively considerable? “Cumulatively considerable” means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects.</td>
<td>☐ ☐ ☒ ☒ ☒</td>
<td>☒</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c) Does the project have environmental effects that will cause substantial adverse effects on human beings, either directly or indirectly?</td>
<td>☐ ☐ ☐ ☒ ☒</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

ENVIRONMENTAL CHECKLIST AND DISCUSSION

Criterion a)

Analysis in the 2035 General Plan EIR

Potential impacts on the overall quality of the environment, sensitive species and communities, and important cultural resources were evaluated in the biological and cultural resources sections of the 2035 General Plan EIR. The City determined that any impacts on biological and cultural resources would be addressed by existing regulations, General Plan policies, and mitigation measures developed for individual projects and that any impacts would be less than significant. Similarly, the TOD EIR evaluated the potential impacts of development and found that any impacts would be less than significant with mitigation. The mitigation consisted of the General Plan policies in effect at the time.

New Information and Specific Effects of the Project

The project would be constructed in a previously developed urban area that does not support special-status species or their habitat and where no archaeological sites or historic structures are known to exist. Consistent with General Plan policies, the project would implement a range of measures to protect environmental quality, including minimizing air and noise pollution, controlling stormwater runoff, and locating near transit to minimize traffic and GHG emissions. Therefore, the
project would not degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of rare or endangered plants or animals, or eliminate important examples of the major periods of California history or prehistory. Therefore, the effect of the project would **not be more significant than the impacts that were evaluated in the prior EIR**.

Criterion b)

Analysis in the 2035 General Plan EIR

The 2035 General Plan EIR evaluated the potential for cumulative impacts and determined that the impacts of General Plan buildout would be less than significant (less than cumulatively considerable) with the exception of air quality, GHG emissions, noise, and traffic. The City determined that the General Plan’s contribution to these cumulative impacts could be significant and that these impacts could be significant (cumulatively considerable).

New Information and Specific Effects of the Project

As discussed throughout this Initial Study, the proposed project site was assumed for development in the 2035 General Plan EIR and is being developed at the intensity consistent with that analyzed in the 2035 General Plan EIR. Based on the findings of this Infill Checklist, the project would not have a cumulatively considerable contribution to any cumulative impacts that were not identified in the EIR.

Criterion c)

Analysis in the 2035 General Plan EIR

Potential impacts that could directly affect human beings were analyzed in the 2035 General Plan EIR. However, direct impacts from carbon monoxide, toxic air contaminants, geological risks, hazardous waste, and flooding were all determined less than significant. The EIR identified several potential impacts, such as air quality, GHG emissions, noise, public services, and transportation, that could be **significant and unavoidable**.

New Information and Specific Effects of the Project

Based on the findings of this Infill Checklist, the project would not result in any direct unmitigated significant impacts on human beings. With the implementation of EIR mitigation measures, General Plan policies, and design measures identified in this document, any impacts that would directly or indirectly affect humans (e.g., toxic air contaminants, flooding, noise) would be less than significant or less than significant with mitigation, and no impacts would be greater than those of the 2035 General Plan. Therefore, the project would not have a substantial impact on human beings, and the effect of the project would **not be more significant than the impacts that were evaluated in the prior EIR**.
5.0 REFERENCES
5.0 DOCUMENTS REFERENCED IN INITIAL STUDY AND/OR INCORPORATED BY REFERENCE

The following documents were used to support the preparation of this Infill Checklist. Compliance with federal, state, and local laws is assumed in all projects.

5.0 REFERENCES

Cartier, Robert, and Glory Anne Laffey. 1986. Section 106, Historic Property Survey Report for the Davis Street Widening Project Between Wayne Avenue and Martinez Street in the City of San Leandro, County of Alameda. Archaeological Resource Management.

Chavez, David. 1982. Lincoln Property and Davis Street Improvements, San Leandro.

———. 1984. Archaeological Survey for the 800-foot-long Road Widening Section of San Leandro Boulevard, San Leandro, California.

Darcangelo, Jennifer, and Milford Wayne Donaldson. 2007. FHWA 070321A Determinations of Eligibility for the Proposed Seismic Retrofit of BART Aerial Stations and Structures along the Concord, Richmond, Daly City, and Fremont Lines. California Department of Transportation.

5.0 REFERENCES

Google Earth. 2018.

Gualtieri, Kathryn. 1988. FHWA870224A; Davis Street Widening, City of San Leandro.

———. 2018b. 915 Antonio Street and 844 Alvarado Street Project, City of San Leandro, Alameda County, California, Cultural Resources Study and Eligibility Evaluations.

Miller, George. 1980. An Archaeological Reconnaissance of the San Leandro Boulevard Widening Project. Institute of Cultural Resources, California State University, Hayward.

MTC and ABA (Metropolitan Transportation Commission and Association of Bay Area Governments). 2017. Plan Bay Area 2040.

5.0 REFERENCES

———. 2017b. Phase I Environmental Site Assessment, 728, 854 and 915 Antonio Street, 806, 844 and 975 Alvarado Street, and Former Western Extension of Antonio Street, San Leandro, California.

———. 2017c. Environmental Soil Sampling and Analytical Report, 728, 854, and 915 Antonio Street; 806, 844, and 975 Alvarado Street; and Former Western Extension of Antonio Street, San Leandro, California.

5.0 REFERENCES

Thompson & West. 1878. Alameda County Map No. 3. Thompson & West: Oakland, California. https://www.davidrumsey.com/luna/servlet/detail/RUMSEY~8~1~21359~620061:Alameda-Co--3-?sort=pub_list_no_initialsort%2Cpub_date%2Cpub_list_no%2Cseries_no&qv=w4s/where%2FAlameda%2BCounty%2B%2528Calif.%2529;sort:pub_list_no_initialsort%2Cpub_date%2Cpub_list_no%2Cseries_no;lc:RUMSEY~8~1&mi=8&trs=98.

———. 1948. San Leandro, Calif. 7.5-minute topographic quadrangle.

———. 1959a. San Leandro, Calif. 7.5-minute topographic quadrangle.

———. 1959b. San Leandro, Calif. 7.5-minute topographic quadrangle (photorevised 1968).

This page intentionally left blank.
APPENDICES
TABLE OF CONTENTS

1.0 Introduction .. 1

2.0 Air Quality Setting .. 5

3.0 Greenhouse Gases Setting .. 15

4.0 Project Impact Analysis ... 25

5.0 Conclusion .. 41

References .. 43

APPENDICES

Appendix A: CalEEMod Output Files

TABLES

Table 1 Criteria Air Pollutants Summary of Common Sources and Effects ... 6

Table 2 Summary of Ambient Air Quality Data .. 7

Table 3 Federal and State Ambient Air Quality Attainment Status for the San Francisco Bay Area Air Basin ... 10

Table 4 Greenhouse Gases .. 16

Table 5 California State Climate Change Legislation .. 19

Table 6 BAAQMD Recommended Significance Thresholds .. 25

Table 7 Construction-Related Criteria Pollutant and Precursor Emissions - Unmitigated 30

Table 8 Construction-Related Criteria Pollutant and Precursor Emissions - Mitigated 30

Table 9 Long-Term Operational Criteria Pollutant and Precursor Emissions .. 32

Table 10 Construction-Related Greenhouse Gas Emissions .. 38

Table 11 Greenhouse Gas Emissions - Project Operations .. 39

Table 12 Project Impacts and Mitigation ... 41

FIGURES

Figure 1 Regional Vicinity ... 4
TABLE OF CONTENTS

This page intentionally left blank.
1.0 INTRODUCTION

This report has been prepared to provide an assessment of the potential impacts related to air pollutant and greenhouse gas emissions resulting from implementation of the 915 Antonio Street and 844 Alvarado Street Project (project) in San Leandro, California. The project would be in an area covered by the Downtown San Leandro Transit-Oriented Development Strategy, for which an Environmental Impact Report (prior EIR) was prepared in 2007 (San Leandro 2007b). The air quality and greenhouse gas impact assessment in the 2007 EIR is a plan-level analysis that does not adequately identify or evaluate the potential impacts specific to the project. In addition, the regulatory setting for air pollutant and greenhouse gas emissions in the region and state has changed significantly since the prior EIR was certified in 2007. Therefore, the potential impacts of the project were evaluated independent of any analysis in the prior EIR.

1.1 PROJECT LOCATION

The project area includes the 915 Antonio Street site and the 844 Alvarado Street site, as shown on Figure 1 and summarized in Table 1. The project would also include improvements in the Lola Street and Antonio Street rights of way (ROW). See the project description below for a list of parcels included in the project. The 915 Antonio Street site is located on the west side of Alvarado Street and is bounded by Lola Street to the north, an auto dealership to the south, and railroad tracks to the west. An Alameda County Fire Department training facility is adjacent to the site on the north side of Lola Street. The 844 Alvarado Street site is on the east side of Alvarado Street, bounded to the north by single-family residences and to the south by a chapel/social hall—the Imandade do Divino Espirito Santo. The project area is east of Interstate 880 and approximately 1,250 feet south of and within San Leandro’s city limits bordering Oakland (see Figure 1, Regional Vicinity). The project area is within 0.5 mile of the San Leandro BART station.

1.2 PROJECT DESCRIPTION

The project would develop the 915 Antonio Street site and the 844 Alvarado Street site and result in street improvements to two public street ROWs. Table 1 shows the assessor’s parcel number (APN), situs address for each parcel, and the existing use of the parcels.

<table>
<thead>
<tr>
<th>APN</th>
<th>Situs Address</th>
<th>Existing Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>915 Antonio Street Site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>075-0057-012, 001</td>
<td>915 Antonio Street</td>
<td>Vacant</td>
</tr>
<tr>
<td>075-0155-015</td>
<td>854 Antonio Street</td>
<td>Vacant</td>
</tr>
<tr>
<td>075-0155-011</td>
<td>829 Alvarado Street</td>
<td>Marble Shop</td>
</tr>
<tr>
<td>075-0155-012</td>
<td>857 Alvarado Street</td>
<td>Filarmonica Artista Amadora de San Leandro</td>
</tr>
<tr>
<td>075-0155-013</td>
<td>875 Alvarado Street</td>
<td>Vacant</td>
</tr>
<tr>
<td>—</td>
<td>Antonio Street ROW</td>
<td>Undeveloped ROW</td>
</tr>
<tr>
<td>844 Alvarado Street Site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-54-3</td>
<td>844 Alvarado Street</td>
<td>Vacant</td>
</tr>
<tr>
<td>Street Improvement Sites</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

<table>
<thead>
<tr>
<th>Lola Street ROW</th>
<th>Public Street ROW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alvarado Street ROW</td>
<td>Public Street ROW</td>
</tr>
</tbody>
</table>

915 Antonio Street Site

The project would demolish the existing buildings on the 915 Antonio Street site and construct a 931,989-square-foot development containing 687 market-rate rental apartment units and a 550-square-foot café. The project’s design includes two buildings. The north building would be six stories tall with a building height of approximately 72 feet 2 inches, and the south building would be five stories tall with a building height of approximately 62 feet. Both residential buildings would be wood-framed and would be built over a two-story, cast-in-place parking structure containing 892 spaces, with one level below grade.

The proposed density would be 120 units per acre and the floor area ratio (FAR) would be 3.6. The lot coverage would be 66 percent (164,507 square feet) and the proposed open space would be 84,065 square feet. The project would be consistent with the zoning of Downtown Area 4, Special Review Overlay District (DA-4S) and the General Plan designation of Transit-Oriented Development Mixed Use.

844 Alvarado Street Site

An existing use of the 915 Antonio Street project site is the music conservatory Filarmonica Artista Amadora de San Leandro (FAASL). The project would construct a 4,326-square-foot music conservatory building on a 0.29-acre site at 844 Alvarado Street (across Alvarado Street to the east from the existing FAASL facility) as a replacement facility for the FAASL.

Street Improvements

As part of the project, a number of street improvements would be constructed within the public ROW. Lola Street would have a full street reconstruction (new curb, cutter, pavement section), new sidewalks, storm and sewer infrastructure, and joint trench. Street improvements along the western edge of Alvarado Street would include a new curb and gutter along the entire project frontage (including sidewalks and an 8-foot wide Class-I multi-use path which would be part of the San Leandro Creek Trail), new storm and sewer infrastructure, fire hydrants, and dry and wet utility laterals to serve the project.

1.3 PROJECT CONSTRUCTION

Project construction could occur in multiple phases, beginning with the construction of the replacement FAASL facility on the 844 Alvarado Street site, followed by construction on the 915 Antonio Street site as a second phase, for a total construction duration of approximately 32 months, beginning in 2019 and ending in 2021. Construction would begin with the replacement FAASL facility at 844 Alvarado Street before development of the main project site at 915 Antonio Street. Improvements to Lola and Alvarado Street would occur in conjunction with development of the 915 Alvarado Street site. Construction activities would consist of demolishing the existing buildings, preparing the site (including grading), removing existing paved areas, and constructing new buildings. Construction would require excavation and off-hauling of materials totaling approximately 473 cubic yards for the 844 Alvarado Street site and 91,500 cubic yards for the 915 Antonio site. Construction would also involve use of heavy equipment that could include, but is not limited to, bulldozers, scrapers, backhoes, excavators, loaders, roller compactors, and a paving machine.
2.0 AIR QUALITY SETTING

The project area is located in San Leandro, California, in the western portion of Alameda County and within the San Francisco Bay Area Air Basin (SFBAAB). Air quality in the SFBAAB is under the regulatory jurisdiction of the Bay Area Air Quality Management District (BAAQMD).

SAN FRANCISCO BAY AREA AIR BASIN

The SFBAAB comprises all of Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, and Santa Clara counties, the southern portion of Sonoma County, and the southwestern portion of Solano County. There are 11 climatological subregions within the SFBAAB. The project area is in the Northern Alameda and Western Contra Costa Counties climatological subregion of the SFBAAB. The subregion's western boundary is defined by the Bay and its eastern boundary by the Oakland-Berkeley hills. The Oakland-Berkeley hills have a ridgeline height of approximately 1,500 feet, a significant barrier to air flow. The most densely populated area of the subregion lies in a strip of land between the Bay and the lower hills.

In this area, marine air traveling through the Golden Gate, as well as across San Francisco and through the San Bruno Gap, is a dominant weather factor. The Oakland-Berkeley hills cause the westerly flow of air to split off to the north and south of Oakland, which results in diminished wind speeds. The prevailing winds for most of this subregion are from the west. At the northern end, near Richmond, prevailing winds are from the south-southwest. Temperatures in this subregion have a narrow range due to the proximity of the moderating marine air. Maximum temperatures during the summer average in the mid-70s, with minimums in the mid-50s. Winter highs are in the mid- to high-50s, with lows in the low- to mid-40s.

The air pollution potential is lowest for the parts of the subregion that are closest to the Bay, largely due to good ventilation and less influx of pollutants from upwind sources. The occurrence of light winds in the evenings and early mornings occasionally causes elevated pollutant levels. The air pollution potential at the northern (Richmond) and southern (Oakland, San Leandro) parts of this subregion is marginally higher than in communities directly east of the Golden Gate because of the lower frequency of strong winds.

This subregion contains a variety of industrial air pollution sources. Some industries are quite close to residential areas. The subregion is also traversed by frequently congested major highways, a significant source of air pollutants (BAAQMD 2017a).

Air Pollutants of Concern

The air pollutants emitted into the ambient air by stationary and mobile sources are regulated by federal and state laws. These regulated air pollutants are known as criteria air pollutants and are categorized into primary and secondary pollutants. Primary air pollutants are those that are emitted directly from sources. Carbon monoxide (CO), reactive organic gases (ROG), nitrogen oxide (NOx), sulfur dioxide (SO2), coarse particulate matter (PM10), fine particulate matter (PM2.5), lead, and fugitive dust are primary air pollutants. Of these, CO, SO2, PM10, and PM2.5 are criteria pollutants. ROG and NOx are criteria pollutant precursors and go on to form secondary criteria pollutants through chemical and photochemical reactions in the atmosphere. Ozone (O3) and nitrogen dioxide (NO2) are the principal secondary pollutants.

Common sources and health effects of criteria air pollutants are summarized in Table 2.
Table 2
Criteria Air Pollutants Summary of Common Sources and Effects

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Major Man-Made Sources</th>
<th>Human Health Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>An odorless, colorless gas formed when carbon in fuel is not burned completely; a component of motor vehicle exhaust.</td>
<td>Reduces the ability of blood to deliver oxygen to vital tissues, affecting the cardiovascular and nervous system. Impairs vision, causes dizziness, and can lead to unconsciousness or death.</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO₂)</td>
<td>A reddish-brown gas formed during fuel combustion for motor vehicles and industrial sources. Sources include motor vehicles, electric utilities, and other sources that burn fuel.</td>
<td>Respiratory irritant; aggravates lung and heart problems. Precursor to ozone and acid rain. Contributes to global warming and nutrient overloading which deteriorates water quality. Causes brown discoloration of the atmosphere.</td>
</tr>
<tr>
<td>Ozone (O₃)</td>
<td>Formed by a chemical reaction between volatile organic compounds (VOC) and NOx in the presence of sunlight. VOCs are also commonly referred to as ROGs. Common sources of these precursor pollutants include motor vehicle exhaust, industrial emissions, gasoline storage and transport, solvents, paints, and landfills.</td>
<td>Irritates and causes inflammation of the mucous membranes and lung airways; causes wheezing, coughing, and pain when inhaling deeply; decreases lung capacity; aggravates lung and heart problems. Damages plants; reduces crop yield. Damages rubber, some textiles and dyes.</td>
</tr>
<tr>
<td>Particulate Matter (PM₁₀ & PM₂.₅)</td>
<td>Produced by power plants, steel mills, chemical plants, unpaved roads and parking lots, wood-burning stoves and fireplaces, automobiles, and other sources.</td>
<td>Increased respiratory symptoms, such as irritation of the airways, coughing, or difficulty breathing; aggravated asthma; development of chronic bronchitis; irregular heartbeat; nonfatal heart attacks; and premature death in people with heart or lung disease. Impairs visibility (haze).</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO₂)</td>
<td>A colorless, nonflammable gas formed when fuel containing sulfur is burned; when gasoline is extracted from oil; or when metal is extracted from ore. Examples are petroleum refineries, cement manufacturing, metal processing facilities, locomotives, and ships.</td>
<td>Respiratory irritant. Aggravates lung and heart problems. In the presence of moisture and oxygen, sulfur dioxide converts to sulfuric acid which can damage marble, iron and steel. Damages crops and natural vegetation. Impairs visibility. Precursor to acid rain.</td>
</tr>
<tr>
<td>Lead</td>
<td>Metallic element emitted from metal refineries, smelters, battery manufacturers, iron and steel producers, use of leaded fuels by racing and aircraft industries.</td>
<td>Anemia, high blood pressure, brain and kidney damage, neurological disorders, cancer, lowered IQ. Affects animals, plants, and aquatic ecosystems.</td>
</tr>
</tbody>
</table>

Source: CAPCOA 2011

Other pollutants, such as carbon dioxide, a natural byproduct of animal respiration that is also produced in the combustion process, have been linked to such phenomena as climate change. While there are no adopted thresholds for their release, Assembly Bill (AB) 32 and Senate Bill (SB) 32 require the state to reduce greenhouse gas emissions, which are discussed further in Section 3.0, Greenhouse Gas Setting. Greenhouse gas emissions do not jeopardize the air basin’s attainment status.
Ambient Air Quality

Criteria Pollutants

Ambient air quality in the region can be inferred from ambient air quality measurements conducted at air quality monitoring stations. Existing levels of ambient air quality and historical trends and projections in the region are documented by measurements made by the air districts and the California Air Resources Board (CARB). The nearest air quality monitoring site to the project is at 9925 International Boulevard in Oakland, approximately 1.2 miles north of the project area. Table 3 shows historical occurrences of ozone pollutant levels exceeding state and federal ambient air quality standards for the three-year period from 2014 through 2016. There are no monitoring sites in Alameda County with data for PM$_{10}$ concentrations.

Table 3
Summary of Ambient Air Quality Data

<table>
<thead>
<tr>
<th>Pollutant Standards</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (Oakland–9925 International Boulevard Station)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max 1-hour concentration (ppm) state</td>
<td>0.083</td>
<td>0.094</td>
<td>0.082</td>
</tr>
<tr>
<td>Number of days above state 1-hour standard</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Max 8-hour concentration (ppm) state</td>
<td>0.069</td>
<td>0.074</td>
<td>0.058</td>
</tr>
<tr>
<td>Number of days above state 8-hour standard (0.070 ppm)</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Max 8-hour concentration (ppm) federal</td>
<td>0.068</td>
<td>0.074</td>
<td>0.057</td>
</tr>
<tr>
<td>Number of days above federal 8-hour standard 2015 (0.070 ppm)</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Fine Particulate Matter (PM$_{2.5}$) (Oakland–9925 International Boulevard Station)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max 24-hour concentration (μg/m3) federal</td>
<td>37.6</td>
<td>44.7</td>
<td>15.5</td>
</tr>
<tr>
<td>Number of days above federal standard</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Source: CARB 2018

*Notes: μg/m3 = micrograms per cubic meter; ppm = parts per million; * = No data is currently available from CARB to determine the value*

Toxic Air Contaminants

In addition to the criteria pollutants discussed above, toxic air contaminants (TACs) are another group of pollutants of concern. TACs are considered either carcinogenic or noncarcinogenic based on the nature of the health effects associated with exposure to the pollutant. For regulatory purposes, carcinogenic TACs are assumed to have no safe threshold below which health impacts would not occur, and cancer risk is expressed as excess cancer cases per one million exposed individuals. Noncarcinogenic TACs differ in that there is generally assumed to be a safe level of exposure below which no negative health impact is believed to occur. These levels are determined on a pollutant-by-pollutant basis.

There are many different types of TACs, with varying degrees of toxicity. Sources of TACs include industrial processes, such as petroleum refining and chrome-plating operations; commercial operations, such as gasoline stations and dry cleaners; and motor vehicle exhaust. Public exposure to TACs can result from emissions from normal operations, as well as from accidental releases of hazardous materials during upset conditions. The health effects associated with TACs are diverse.
and generally are assessed locally, rather than regionally. TACs can cause long-term health effects such as cancer, birth defects, neurological damage, asthma, bronchitis, or genetic damage, or short-term acute effects such as eye watering, respiratory irritation (a cough), runny nose, throat pain, and headaches.

To date, CARB has designated over 200 compounds as toxic air contaminants. Additionally, CARB has implemented control measures for a number of compounds that pose high risks and show potential for effective control. The majority of the estimated health risks from TACs can be attributed to a relatively few compounds.

Most recently, CARB identified diesel particulate matter (diesel PM) as a toxic air contaminant. Diesel PM differs from other TACs in that it is not a single substance but rather a complex mixture of hundreds of substances. Diesel exhaust is a complex mixture of particles and gases produced when an engine burns diesel fuel. Diesel PM is of concern because it causes lung cancer; many compounds found in diesel exhaust are carcinogenic. Diesel PM includes the particle-phase constituents in diesel exhaust. The chemical composition and particle sizes of diesel PM vary between different engine types (heavy-duty, light-duty), engine operating conditions (idle, accelerate, decelerate), fuel formulations (high/low sulfur fuel), and the year of the engine (EPA 2002, pp. 1-1 and 1-2). Some short-term (acute) effects of diesel exhaust include eye, nose, throat, and lung irritation, and diesel exhaust can cause coughs, headaches, light-headedness, and nausea. Diesel PM poses the greatest health risk among the TACs. Almost all diesel exhaust particle mass is 10 microns or less in diameter. Because of their extremely small size, these particles can be inhaled and eventually trapped in the bronchial and alveolar regions of the lung.

Carb does not classify PM2.5 (fine particulate matter) as a TAC. However, the BAAQMD has determined that both long-term and short-term exposure to PM2.5 can cause a wide range of health effects. PM2.5 is a complex mixture of substances that includes elements such as carbon and metals; compounds such as nitrates, organics, and sulfates; and complex mixtures such as diesel exhaust and wood smoke. PM2.5 can be emitted directly and can also be formed in the atmosphere through reactions among different pollutants (BAAQMD 2017a).

Sensitive Receptors

Some land uses are considered more sensitive to air pollution than others due to the types of population groups or activities involved and are referred to as sensitive receptors. Examples of these sensitive receptors are residences, schools, hospitals, and daycare centers. CARB has identified the following groups of individuals as the most likely to be affected by air pollution: the elderly over 65, children under 14, infants (including in utero in the third trimester of pregnancy), and persons with cardiovascular and chronic respiratory diseases such as asthma, emphysema, and bronchitis.

Residential areas are considered to be sensitive receptors to air pollution because residents (including children and the elderly) tend to be at home for extended periods of time, resulting in sustained exposure to any pollutants present. Children and infants are considered more susceptible to health effects of air pollution due to their immature immune systems, developing organs, and higher breathing rates. As such, schools are also considered sensitive receptors, as children are present for extended durations and engage in regular outdoor activities.

The closest existing sensitive receptors to the project area are single-family homes adjacent to the 844 Alvarado Street site, and single-family homes across the Union Pacific railroad tracks to the west of the 915 Antonio Street site. The closest school is the Saint Leander School approximately 1,450 feet (0.27 mile) to the southeast.
2.0 AIR QUALITY SETTING

Odors

The land uses identified by the BAAQMD as sources of odors include wastewater treatment plants, wastewater pumping facilities, sanitary landfills, transfer stations, composting facilities, petroleum refineries, asphalt batch plants, chemical manufacturing and fiberglass manufacturing facilities, painting/coating operations, rendering plants, coffee roasters, food processing facilities, confined animal facilities, feedlots, dairies, green waste and recycling operations, and metal smelting plants. If a source of odors is proposed to be located near existing or planned sensitive receptors, it could have the potential to cause operational-related odor impacts. With respect to operational impacts, the BAAQMD recommends screening criteria based on the distance between the receptor and the types of sources known to generate odors. The project area vicinity does not include any of these potential odor sources (BAAQMD 2017a).

2.1 AIR QUALITY REGULATORY FRAMEWORK

Ambient air quality standards have been promulgated at the local, state, and federal levels. The federal Clean Air Act of 1971 and the Clean Air Act Amendments (1977) established the national ambient air quality standards (NAAQS), which are regulated by the US Environmental Protection Agency (EPA). The State of California has also adopted its own California ambient air quality standards (CAAQS), which are regulated by CARB. Implementation of the project would occur in the Northern Alameda and Western Contra Costa Counties climatological subregion of the SFBAAB. Air quality in the air basin is under the regulatory jurisdiction of the BAAQMD. Implementation of the project is subject to the rules and regulations adopted by the BAAQMD to achieve the national and state ambient air quality standards. Federal, state, regional, and local laws, regulations, plans, and guidelines that are relevant to the project are summarized below.

Federal

The federal Clean Air Act (CAA) was first enacted in 1963 and has been amended numerous times in subsequent years (1965, 1967, 1970, 1977, and 1990). The CAA establishes federal air quality standards, known as national ambient air quality standards (NAAQS), and specifies future dates for achieving compliance. The CAA also mandates that each state submit and implement a State Implementation Plan (SIP) for local areas not meeting those standards. The plans must include pollution control measures that demonstrate how the standards will be met.

The 1990 amendments to the CAA identify specific emission-reduction goals for areas not meeting the NAAQS. These amendments require both a demonstration of reasonable further progress toward attainment and incorporation of additional sanctions for failure to attain or meet interim milestones. Table 3 lists the NAAQS currently in effect for each criteria pollutant. The CAAQS (described below) are also in the table included for reference.

Ambient Air Quality Standards

The Clean Air Act of 1971 established NAAQS, with states retaining the option to adopt more stringent standards or to include other pollution species. These standards are the levels of air quality considered to provide a margin of safety in the protection of the public health and welfare. They are designed to protect those sensitive receptors most susceptible to further respiratory distress such as asthmatics, the elderly, very young children, people already weakened by other disease or illness, and persons engaged in strenuous work or exercise. Healthy adults can tolerate occasional exposure to air pollutant concentrations considerably above these minimum standards before adverse effects are observed.
2.0 Air Quality Setting

Both the State of California and the federal government have established health-based ambient air quality standards for six air pollutants. As shown in Table 4, these pollutants include ozone, CO, NO₂, SO₂, PM₁₀, PM₂.₅, and lead. In addition, the State has set standards for sulfates, hydrogen sulfide, vinyl chloride, and visibility-reducing particles. These standards are designed to protect the health and welfare of the populace with a reasonable margin of safety.

Table 4
Federal and State Ambient Air Quality Attainment Status for the San Francisco Bay Area Air Basin

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>California Standards</th>
<th>National Standards</th>
<th>Source: BAAQMD 2017a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Concentration</td>
<td>Attainment Status</td>
<td>Concentration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ozone (O₃)</td>
<td>8 Hours</td>
<td>0.070 ppm (137 µg/m³)</td>
<td>N</td>
<td>0.070 ppm</td>
</tr>
<tr>
<td></td>
<td>1 Hour</td>
<td>0.09 ppm (180 µg/m³)</td>
<td>N</td>
<td>No standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not applicable</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>8 Hours</td>
<td>12 ppm (10 mg/m³)</td>
<td>A</td>
<td>9 ppm (10 mg/m³)</td>
</tr>
<tr>
<td></td>
<td>1 Hour</td>
<td>20 ppm (23 mg/m³)</td>
<td>A</td>
<td>35 ppm (40 mg/m³)</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO₂)</td>
<td>1 Hour</td>
<td>0.18 ppm (339 µg/m³)</td>
<td>A</td>
<td>0.100 ppm (20 µg/m³)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annual Arithmetic Mean</td>
<td>0.030 ppm (57 µg/m³)</td>
<td>0.053 ppm (100 µg/m³)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO₂)</td>
<td>24 Hours</td>
<td>0.04 ppm (105 µg/m³)</td>
<td>A</td>
<td>0.14 ppm (365 µg/m³)</td>
</tr>
<tr>
<td></td>
<td>1 Hour</td>
<td>0.25 ppm (665 µg/m³)</td>
<td>A</td>
<td>0.075 ppm (196 µg/m³)</td>
</tr>
<tr>
<td>Particulate Matter (PM₁₀)</td>
<td>Annual Arithmetic Mean</td>
<td>20 µg/m³</td>
<td>N</td>
<td>No standard</td>
</tr>
<tr>
<td></td>
<td>24 Hours</td>
<td>50 µg/m³</td>
<td>N</td>
<td>150 µg/m³</td>
</tr>
<tr>
<td>Particulate Matter – Fine (PM₂.₅)</td>
<td>Annual Arithmetic Mean</td>
<td>12 µg/m³</td>
<td>N</td>
<td>15 µg/m³</td>
</tr>
<tr>
<td></td>
<td>24 Hours</td>
<td>35 µg/m³</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Sulfates</td>
<td>24 Hours</td>
<td>25 µg/m³</td>
<td>A</td>
<td>—</td>
</tr>
<tr>
<td>Lead</td>
<td>30-Day Average</td>
<td>1.5 µg/m³</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Calendar Quarter</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Rolling 3-Month Average</td>
<td>—</td>
<td>—</td>
<td>0.15 µg/m³</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>1 Hour</td>
<td>0.03 ppm (42 µg/m³)</td>
<td>U</td>
<td>—</td>
</tr>
<tr>
<td>Vinyl Chloride (chloroethene)</td>
<td>24 Hours</td>
<td>0.01 ppm (26 µg/m³)</td>
<td>No information available</td>
<td>—</td>
</tr>
<tr>
<td>Visibility-Reducing Particles</td>
<td>8 Hours (10:00 to 18:00 PST)</td>
<td>—</td>
<td>U</td>
<td>—</td>
</tr>
</tbody>
</table>

Notes: A = attainment; N = nonattainment; U = unclassified; mg/m³ = milligrams per cubic meter; ppm = parts per million; ppb = parts per billion; µg/m³ = micrograms per cubic meter
State

The California Clean Air Act (CCAA), enacted in 1988, established a statewide air pollution control program. The CCAA requires all air districts in the state to endeavor to meet the CAAQS by the earliest practical date. Unlike the federal Clean Air Act, the CCAA does not set precise attainment deadlines. Instead, the act establishes increasingly stringent requirements for areas that will require more time to achieve the standards. The CAAQS are generally more stringent than the NAAQS and incorporate additional standards for sulfates, hydrogen sulfide, vinyl chloride, and visibility-reducing particles. The CAAQS and NAAQS are both listed in Table 4.

CARB and local air districts are responsible for California’s air quality standards, which are to be achieved through district-level air quality management plans that would be incorporated into the State Implementation Plan. In California, the EPA has delegated authority to prepare SIPs to the California Air Resources Board, which, in turn, has delegated that authority to individual air districts.

Air Quality Attainment Plans

The BAAQMD is responsible for preparing plans to attain ambient air quality standards in the San Francisco Bay Area Air Basin. The BAAQMD prepares ozone attainment plans for the national ozone standard and clean air plans for the California standard, both in coordination with the Metropolitan Transportation Commission (MTC) and the Association of Bay Area Governments (ABAG).

The BAAQMD adopted the Bay Area 2017 Clean Air Plan in April 2017. The plan addresses nonattainment of the national 1-hour ozone standard in the SFBAAB. The Bay Area 2017 Clean Air Plan establishes a program of rules and regulations directed at reducing air pollutant emissions and achieving California and national air quality standards. The plan’s pollutant control strategies are based on the latest scientific and technical information and planning assumptions, updated emission inventory methodologies for various source categories, and the latest population growth projections and vehicle miles traveled (VMT) projections for the region. The Clean Air Plan defines a control strategy that the BAAQMD and its partners will implement to (1) reduce emissions and decrease ambient concentrations of harmful pollutants; (2) safeguard public health by reducing exposure to air pollutants that pose the greatest health risk, with an emphasis on protecting the communities most heavily impacted by air pollution; and (3) reduce greenhouse gas emissions to protect the climate. It is important to note that in addition to updating the previously prepared ozone plan, the Clean Air Plan also serves as a multipollutant plan to protect public health and the climate. In its dual role as an update to the state ozone plan and a multipollutant plan, the Bay Area 2017 Clean Air Plan addresses four categories of pollutants (BAAQMD 2017b):

- Ground-level ozone and its key precursors, ROG and NOx
- Particulate matter: primary PM\textsubscript{2.5}, as well as precursors to secondary PM\textsubscript{2.5}
- Air toxics
- Greenhouse gases

The Clean Air Plan includes local guidance for the State Implementation Plan, which includes the framework for air quality basins to achieve attainment of the state and federal ambient air quality standards.
Toxic Air Contaminant Regulations

In 1983, the California legislature enacted a program to identify the health effects of TACs and to reduce exposure to these contaminants to protect the public health. The California Health and Safety Code defines a TAC as “an air pollutant which may cause or contribute to an increase in mortality or serious illness, or which may pose a present or potential hazard to human health.” A substance that is listed as a hazardous air pollutant pursuant to subsection (b) of Section 112 of the federal Clean Air Act (42 United States Code Section 7412[b]) is a TAC. Under state law, the California Environmental Protection Agency, acting through CARB, is authorized to identify a substance as a TAC if it determines the substance is an air pollutant that may cause or contribute to an increase in mortality or to an increase in serious illness, or may pose a present or potential hazard to human health.

The State of California regulates TACs primarily through AB 1807 (Tanner Air Toxics Act) and AB 2588 (Air Toxics “Hot Spot” Information and Assessment Act of 1987). The Tanner Air Toxics Act sets forth a formal procedure for CARB to designate substances as toxic air contaminants. Once a TAC is identified, CARB adopts an “airborne toxics control measure” for sources that emit designated TACs. If there is a safe threshold for a substance (a point below which there is no toxic effect), the control measure must reduce exposure to below that threshold. If there is no safe threshold, the measure must incorporate toxics best available control technology to minimize emissions. To date, CARB has established formal control measures for eleven TACs, all of which are identified as having no safe threshold.

TACs from stationary sources are also regulated in California under the Air Toxics “Hot Spot” Information and Assessment Act of 1987. Under AB 2588, TAC emissions from individual facilities are quantified and prioritized by the air quality management district or air pollution control district. High-priority facilities are required to perform a health risk assessment and, if specific thresholds are exceeded, are required to communicate the results to the public in the form of notices and public meetings.

Since the last update to the TAC list in December 1999, CARB (2011) has designated 244 compounds as TACs. Additionally, CARB has implemented control measures for a number of compounds that pose high risks and show potential for effective control. The majority of the estimated health risks from TACs can be attributed to relatively few compounds, the most important being particulate matter from diesel-fueled engine exhaust.

California Diesel Risk Reduction Plan

In September 2000, CARB adopted the Diesel Risk Reduction Plan (DRRP), which recommends many control measures to reduce the risks associated with diesel PM and achieve a goal of 85 percent reduction in human health cancer risk associated with diesel PM emissions by 2020. The DRRP incorporates measures to reduce emissions from diesel-fueled vehicles and stationary diesel-fueled engines. CARB’s ongoing efforts to reduce diesel-exhaust emissions from these sources include the development of specific statewide regulations, which are designed to further reduce diesel PM emissions. The goal of each regulation is to make diesel engines as clean as possible by establishing state-of-the-art technology requirements or emission standards to reduce diesel PM emissions.

Since the initial adoption of the DRRP in September 2000, CARB has adopted numerous rules related to the reduction of diesel PM from mobile sources, as well as the use of cleaner-burning fuels. Transportation sources addressed by these rules include public transit buses, school buses, on-road heavy-duty trucks, and off-road heavy-duty equipment.
In April 2017, CARB released the Strategies to Reduce Air Pollution Exposure Near High-Volume Roadways report as a supplement to its 2005 Air Quality and Land Use Handbook. In cases where sensitive receptors could be sited near high-volume roadways, the following strategies could be applied to reduce exposure from mobile-source TACs (CARB 2017c):

- Use of designs that promote air flow and pollutant dispersion along street corridors.
- Construction of solid barriers, such as sound walls.
- Planting of vegetation for pollutant dispersion.

Regional

Bay Area Air Quality Management District

In Alameda County, the air quality regulating authority is the BAAQMD, which adopts and enforces controls on stationary sources of air pollutants through its permit and inspection programs. Other responsibilities include monitoring air quality and responding to citizen complaints concerning air quality. The BAAQMD (2017a) includes directions, recommendations, and thresholds of significance for the analysis of a project’s air quality impacts in its CEQA Air Quality Guidelines.

The BAAQMD develops regulations to improve air quality and protect the health and welfare of Bay Area residents and their environment. BAAQMD rules and regulations applicable to the project area include, but are not limited to, the following:

- **Regulation 8, Rule 3, Architectural Coatings.** Except as provided in Sections 8-3-302, 303, 307, and 309, no person shall: (i) manufacture, blend, or repackage for sale within the District; (ii) supply, sell, or offer for sale within the District; or (iii) solicit for application or apply within the District, any architectural coating with a VOC content, as calculated pursuant to Section 8-3-607, in excess of the corresponding limit specified in the following tables [VOC limit tables not shown here] (BAAQMD 2009).

Local

City of San Leandro 2035 General Plan

The Environmental Hazards Element of the San Leandro (2016) General Plan contains an overview of air quality in the city and Goal EH-3: Promote and participate in efforts to improve the region’s air quality. To support the goal, the element contains the following air quality–related policies and actions potentially relevant to the project:

- **Policy EH-3.1** Clean Air Plan Implementation. Cooperate with the appropriate regional, state, and federal agencies to implement the regional Clean Air Plan and enforce air quality standards.

- **Policy EH-3.4** Design, Construction, and Operation. Require new development to be designed and constructed in a way that reduces the potential for future air quality problems, such as odors and the emission of any and all air pollutants. This should be done by:
(a) Requiring construction and grading practices that minimize airborne dust and particulate matter;

(b) Ensuring that best available control technology is used for operations that could generate air pollutants;

(c) Encouraging energy conservation and low-polluting energy sources;

(d) Promoting landscaping and tree planting to absorb carbon monoxide and other pollutants; and

(e) Implementing the complementary strategies to reduce greenhouse gases identified in the Climate Action Plan.

Action EH-3.4.B: Health Risk Assessments. Implement Bay Area Air Quality Management District Guidelines and State Office of Environmental Health Hazard Assessment policies and procedures requiring health risk assessments for residential development and other sensitive land use projects within 1,000 feet of major sources of toxic air contaminants, including freeways and roadways with over 10,000 vehicles per day. As appropriate, identify mitigation measures (such as air filtration systems) to reduce the potential exposure to particulate matter, carbon monoxide, diesel fumes, and other potential health hazards. Measures identified in the HRA shall be included in the environmental document and/or incorporated into the site development plan as a component of the proposed project.
3.0 GREENHOUSE GASES SETTING

Certain gases in the earth’s atmosphere, classified as greenhouse gas (GHG) emissions, play a critical role in determining the earth’s surface temperature. Solar radiation enters the earth’s atmosphere from space. A portion of the radiation is absorbed by the earth’s surface and a smaller portion of this radiation is reflected back toward space. This absorbed radiation is then emitted from the earth as low-frequency infrared radiation. The frequencies at which bodies emit radiation are proportional to temperature. The earth has a much lower temperature than the sun; therefore, the earth emits lower frequency radiation. Most solar radiation passes through GHGs; however, infrared radiation is absorbed by these gases. As a result, radiation that otherwise would have escaped back into space is instead “trapped,” resulting in a warming of the atmosphere. This phenomenon, known as the greenhouse effect, is responsible for maintaining a habitable climate on earth. Without the greenhouse effect, the earth would not be able to support life as we know it.

Prominent GHGs contributing to the greenhouse effect are carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O). Human-caused emissions of these GHGs in excess of natural ambient concentrations are believed responsible for intensifying the greenhouse effect and leading to a trend of unnatural warming of the earth’s climate, known as global climate change or global warming. It is “extremely likely” that more than half of the observed increase in global average surface temperature from 1951 to 2010 was caused by the anthropogenic increase in GHG concentrations and other anthropogenic factors together (IPCC 2014, pp. 3 and 5).

Table 5 describes the primary GHGs attributed to global climate change, including a description of their physical properties, primary sources, and contribution to the greenhouse effect.

Each GHG differs in its ability to absorb heat in the atmosphere based on the lifetime, or persistence, of the gas molecule in the atmosphere. CH₄ traps over 25 times more heat per molecule than CO₂, and N₂O absorbs 298 times more heat per molecule than CO₂. Often, estimates of GHG emissions are presented in carbon dioxide equivalents (CO₂e), which weight each gas by its global warming potential. Expressing GHG emissions in CO₂e takes the contribution of all GHG emissions to the greenhouse effect and converts them to a single unit equivalent to the effect that would occur if only CO₂ were being emitted.

Climate change is a global problem. GHGs are global pollutants, unlike criteria air pollutants and toxic air contaminants, which are pollutants of regional and local concern. Whereas pollutants with localized air quality effects have relatively short atmospheric lifetimes (about one day), GHGs have long atmospheric lifetimes (one to several thousand years). GHGs persist in the atmosphere for long enough time periods to be dispersed around the globe. Although the exact lifetime of any particular GHG molecule is dependent on multiple variables and cannot be pinpointed, it is understood that more CO₂ is emitted into the atmosphere than is sequestered by ocean uptake, vegetation, and other forms of sequestration. Of the total annual human-caused CO₂ emissions, approximately 55 percent is sequestered through ocean and land uptakes every year, averaged over the last 50 years, whereas the remaining 45 percent of human-caused CO₂ emissions remains stored in the atmosphere (IPCC 2014, p. 467).
3.0 GREENHOUSE GASES SETTING

<table>
<thead>
<tr>
<th>Greenhouse Gas</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Dioxide (CO₂)</td>
<td>Carbon dioxide is a colorless, odorless gas. CO₂ is emitted in a number of ways, both naturally and through human activities. The largest source of CO₂ emissions globally is the combustion of fossil fuels such as coal, oil, and gas in power plants, automobiles, industrial facilities, and other sources. A number of specialized industrial production processes and product uses such as mineral production, metal production, and the use of petroleum-based products can also lead to CO₂ emissions. The atmospheric lifetime of CO₂ is variable because it is so readily exchanged in the atmosphere. a</td>
</tr>
<tr>
<td>Methane (CH₄)</td>
<td>Methane is a colorless, odorless gas and is the major component of natural gas, about 87 percent by volume. It is also formed and released to the atmosphere by biological processes occurring in anaerobic environments. Methane is emitted from a variety of both human-related and natural sources. Human-related sources include fossil fuel production, animal husbandry (intestinal fermentation in livestock and manure management), rice cultivation, biomass burning, and waste management. These activities release significant quantities of CH₄ to the atmosphere. Natural sources of CH₄ include wetlands, gas hydrates, permafrost, termites, oceans, freshwater bodies, non-wetland soils, and other sources such as wildfires. The atmospheric lifetime of CH₄ is about 12 years. b</td>
</tr>
<tr>
<td>Nitrous Oxide (N₂O)</td>
<td>Nitrous oxide is a clear, colorless gas with a slightly sweet odor. Nitrous oxide is produced by both natural and human-related sources. Primary human-related sources of N₂O are agricultural soil management, animal manure management, sewage treatment, mobile and stationary combustion of fossil fuels, adipic acid production, and nitric acid production. Nitrous oxide is also produced naturally from a wide variety of biological sources in soil and water, particularly microbial action in wet tropical forests. The atmospheric lifetime of N₂O is approximately 120 years. c</td>
</tr>
</tbody>
</table>

Sources: a. EPA 2016a; b. EPA 2016b; c. EPA 2016c

The quantity of GHGs that it takes to ultimately result in climate change is not precisely known; the quantity is enormous, and no single project alone would measurably contribute to a noticeable incremental change in the global average temperature or to global, local, or micro climates. From the standpoint of the California Environmental Quality Act (CEQA), greenhouse gas impacts on global climate change are inherently cumulative.

GREENHOUSE GAS EMISSION SOURCES

Emissions of GHGs contributing to global climate change are attributable in large part to human activities associated with the transportation, industrial/manufacturing, utility, residential, commercial, and agricultural emissions sectors. California is a significant emitter of CO₂e in the world and produced 440 million gross metric tons of CO₂e in 2015. In the state, the transportation sector is the largest emitter of GHGs, followed by electricity generation (CARB 2017b). Emissions of CO₂ are byproducts of fossil fuel combustion. Methane, a highly potent greenhouse gas, primarily results from off-gassing (the release of chemicals from nonmetallic substances under ambient or greater pressure conditions) and is largely associated with agricultural practices and landfills. Nitrous oxide is also largely attributable to agricultural practices and soil management. Carbon dioxide sinks, or reservoirs, include vegetation and the ocean, which absorb CO₂ through sequestration and dissolution (CO₂ dissolving into the water), respectively, two of the most common processes for removing carbon dioxide from the atmosphere.
3.0 GREENHOUSE GASES SETTING

EFFECTS OF CLIMATE CHANGE ON THE ENVIRONMENT

The Intergovernmental Panel on Climate Change (IPCC) was established in 1988 by the World Meteorological Organization and the United Nations Environment Programme to provide the world with a scientific view on climate change and its potential effects. According to the IPCC (2014), global average temperature is expected to increase relative to the 1986-2005 period by 0.5-8.6 degrees Fahrenheit (°F) (0.3 to 4.8 degrees Celsius [°C]) by the end of the twenty-first century (2081-2100), depending on future GHG emission scenarios. According to the California Natural Resources Agency (CNRA) (2012), temperatures in California are projected to increase 2.7°F above 2000 averages by 2050 and, depending on emission levels, 4.1-8.6°F by 2100.

Physical conditions beyond average temperatures could be indirectly affected by the accumulation of GHG emissions. For example, changes in weather patterns resulting from increases in global average temperature are expected to result in a decreased volume of precipitation falling as snow in California and an overall reduction in snowpack in the Sierra Nevada. Based on historical data and modeling, the California Department of Water Resources (2008) projects that the Sierra snowpack will experience a 25 to 40 percent reduction from its historic average by 2050. An increase in precipitation falling as rain rather than snow also could lead to increased potential for floods because water that would normally be held in the Sierra Nevada until spring could flow into the Central Valley concurrently with winter storm events (CNRA 2012). This scenario would place more pressure on California’s levee/flood control system.

Another outcome of global climate change is sea level rise. The sea level rose approximately 7 inches during the last century. Assuming that sea level changes along the California coast continue to track global trends, the sea level along the state’s coastline in 2050 could be 10-18 inches higher than in 2000 and 31-55 inches higher by the end of this century (CNRA 2012).

As California’s existing climate changes over time, the ranges of various plant and wildlife species could shift or be reduced, depending on the favored temperature and moisture regimes of each species. In the worst cases, some species would become extinct or be extirpated from the state if suitable conditions are no longer available (CNRA 2012).

Changes in precipitation patterns and increased temperatures are expected to alter the distribution and character of natural vegetation and the associated moisture content of plants and soils. An increase in the frequency of extreme heat events and drought is also expected. These changes are expected to lead to increased frequency and intensity of large wildfires (CNRA 2012).

3.1 GREENHOUSE GASES REGULATORY FRAMEWORK

State

California has adopted various administrative initiatives and legislation relating to climate change, much of which set aggressive goals for GHG emissions reductions in the state. Although lead agencies must evaluate climate change and greenhouse gas emissions of projects, the State CEQA Guidelines do not require or suggest specific methodologies for performing an assessment or specific thresholds of significance and do not specify GHG reduction mitigation measures. Instead, the guidelines allow lead agencies to choose methodologies and make significance determinations based on substantial evidence, as discussed in further detail below. In addition, no state agency has promulgated binding regulations for analyzing GHG emissions, determining their significance, or mitigating significant effects in CEQA documents. Thus, lead agencies exercise their discretion in determining how to analyze GHGs.
California Global Warming Solutions Act (Assembly Bill 32)

The primary acts that have driven GHG regulation and analysis in California include the California Global Warming Solutions Act of 2006 (AB 32) (Health and Safety Code Sections 38500, 38501, 28510, 38530, 38550, 38560, 38561–38565, 38570, 38571, 38574, 38580, 38590, 38592–38599), which instructs the California Air Resources Board to develop and enforce regulations for the reporting and verifying of statewide GHG emissions. The act directed CARB to set a greenhouse gas emissions limit based on 1990 levels, to be achieved by 2020. The bill set a timeline for adopting a scoping plan for achieving GHG reductions in a technologically and economically feasible manner. The heart of the bill is the requirement that statewide GHG emissions be reduced to 1990 levels by 2020.

Climate Change Scoping Plan

CARB adopted the first Scoping Plan in December 2008 to identify how the state would achieve the goals of AB 32. The Scoping Plan establishes an overall framework for the measures that will be adopted to reduce California’s GHG emissions. CARB determined that achieving the 1990 emissions level would require a reduction of GHG emissions of approximately 29 percent below what would otherwise occur in 2020 in the absence of new laws and regulations (referred to as “business as usual”). The Scoping Plan evaluates opportunities for sector-specific reductions, integrates all CARB and Climate Action Team early actions and additional GHG reduction measures by both entities, identifies additional measures to be pursued as regulations, and outlines the role of a cap-and-trade program. Additional development of these measures and adoption of the appropriate regulations occurred through the end of year 2013.

Key elements of the first Scoping Plan included:

- Expanding and strengthening existing energy efficiency programs, as well as building and appliance standards.
- Achieving a statewide renewables energy mix of 33 percent.
- Developing a California cap-and-trade program that links with other Western Climate Initiative partner programs to create a regional market system and caps sources contributing 85 percent of California’s GHG emissions.
- Establishing targets for transportation-related GHG emissions for regions throughout California, and pursuing policies and incentives to achieve those targets.
- Adopting and implementing measures pursuant to existing state laws and policies, including California’s clean car standards, heavy-duty truck measures, and the Low Carbon Fuel Standard.
- Creating targeted fees, including a public goods charge on water use, fees on high global warming potential gases, and a fee to fund the administrative costs of the State of California’s long-term commitment to AB 32 implementation (CARB 2008).

In May 2014, CARB released and subsequently adopted the First Update to the Climate Change Scoping Plan to identify the next steps in reaching the goals of AB 32 (2006) and evaluate the progress made between 2008 and 2012. According to this update, California is on track to meet the near-term 2020 GHG limit and is well positioned to maintain and continue reductions beyond 2020. This update also reported the trends in GHG emissions from various emissions sectors (e.g., transportation, building energy, agriculture) (CARB 2014).
On December 14, 2017, CARB adopted the 2017 Climate Change Scoping Plan (2017 Scoping Plan), which lays out the framework for achieving the mandate of SB 32 (2016) to reduce statewide GHG emissions to at least 40 percent below 1990 levels by the end of 2030 (CARB 2017a).

The 2017 Scoping Plan includes guidance to local governments in Chapter 5, including plan-level GHG emissions reduction goals and methods to reduce communitywide GHG emissions. In its guidance, CARB recommends that “local governments evaluate and adopt robust and quantitative locally-appropriate goals that align with the statewide per capita targets and the State’s sustainable development objectives and develop plans to achieve the local goals.” CARB (2017a) further states that “it is appropriate for local jurisdictions to derive evidence-based local per capita goals [or some other metric that the local jurisdiction deems appropriate, such as mass emissions or per service population] based on local emissions sectors and population projections that are consistent with the framework used to develop the statewide per capita targets.”

Senate Bill 32

In August 2016, Governor Brown signed SB 32 (Amendments to California Global Warming Solutions Action of 2006), which extends California’s GHG reduction programs beyond 2020. SB 32 amended the Health and Safety Code to include Section 38566, which contains language to authorize CARB to achieve a statewide GHG emissions reduction of at least 40 percent below 1990 levels by no later than December 31, 2030. SB 32 codified the targets established by Executive Order B-30-15 for 2030, which set the next interim step in the State’s continuing efforts to pursue the long-term target expressed in Executive Orders S-3-05 and B-30-15 of 80 percent below 1990 emissions levels by 2050.

Other Legislation

Table 6 provides a brief overview of the other California legislation relating to climate change that may directly and/or indirectly affect the emissions associated with the project.

<table>
<thead>
<tr>
<th>Legislation</th>
<th>Description</th>
</tr>
</thead>
</table>
| Assembly Bill 1493 and Advanced Clean Cars Program | Assembly Bill 1493 (the Pavley Standard) (Health and Safety Code Sections 42823 and 43018.5) aims to reduce GHG emissions from noncommercial passenger vehicles and light-duty trucks of model years 2009–2016. By 2025, when all rules will be fully implemented, new automobiles will emit 34 percent fewer CO2e emissions and 75 percent fewer smog-forming emissions.
Applicability to project: Would help reduce GHG emissions from project residents’, customers’, and visitors’ vehicle trips. |
| Low Carbon Fuel Standard (LCFS) | Executive Order S-01-07 (2007) requires a 10 percent or greater reduction in the average fuel carbon intensity for transportation fuels in California. The regulation took effect in 2010 and is codified at Title 17, California Code of Regulations, Sections 95480–95490. The LCFS will reduce greenhouse gas emissions by reducing the carbon intensity of transportation fuels used in California by at least 10 percent by 2020.
Applicability to project: Would help reduce GHG emissions from project customers’ and visitors’ vehicle trips and delivery trucks. |
3.0 GREENHOUSE GASES SETTING

<table>
<thead>
<tr>
<th>Legislation</th>
<th>Description</th>
</tr>
</thead>
</table>
| Renewables Portfolio Standard (Senate Bill X1-2 & Senate Bill 350) | California’s Renewables Portfolio Standard (RPS) requires retail sellers of electric services to increase procurement from eligible renewable energy resources to 33 percent of total retail sales by 2020. The 33 percent standard is consistent with the RPS goal established in the Scoping Plan. The passage of Senate Bill 350 in 2015 updates the RPS to require the amount of electricity generated and sold to retail customers per year from eligible renewable energy resources to be increased to 50 percent by December 31, 2030. The bill will make other revisions to the RPS program and to certain other requirements on public utilities and publicly owned electric utilities.
Applicability to project: The Pacific Gas and Electric Company (PG&E) is the electricity provider in San Leandro. The RPS may indirectly help reduce GHG emissions associated with project energy demand. |
| Senate Bill 375* | SB 375 (codified in the Government Code and the Public Resources Code) took effect in 2008 and provides a new planning process to coordinate land use planning, regional transportation plans, and funding priorities in order to help California meet the GHG reduction goals established in AB 32. SB 375 requires metropolitan planning organizations (MPOs) to incorporate a Sustainable Communities Strategy in their Regional Transportation Plans that will achieve GHG emissions reduction targets by reducing vehicle miles traveled (VMT) from light-duty vehicles through the development of more compact, complete, and efficient communities.
Applicability to project: The project is an infill site, is consistent with existing zoning and is situated in a Transit-Oriented Development area, which would help reduce regional VMT. |
| California Building Energy Efficiency Standards | In general, the California Building Energy Efficiency Standards require the design of building shells and building components to conserve energy. The California Energy Commission adopted changes to the 2016 Building Energy Efficiency Standards contained in the California Code of Regulations, Title 24, Part 6 (also known as the California Energy Code). The 2016 update to the Building Energy Efficiency Standards focuses on several key areas to improve the energy efficiency of newly constructed buildings and additions and alterations to existing buildings. The most significant efficiency improvements to the residential standards include improvements for attics, walls, water heating, and lighting. New efficiency requirements for elevators and direct digital controls are included in the nonresidential standards. The 2016 standards also include changes made throughout all of its sections to improve the clarity, consistency, and readability of the regulatory language. The 2016 Building Energy Efficiency Standards are 28 percent more efficient than previous standards for residential construction and 5 percent better for nonresidential construction. Energy-efficient buildings require less electricity, and increased energy efficiency reduces fossil fuel consumption and decreases GHG emissions.
Applicability to project: The project is new construction that is required to comply with the most current energy standards at the time of construction. |
| California Green Building Standards | The California Green Building Standards Code (California Code of Regulations, Title 24, Part 11), commonly referred to as the CALGreen Code, is a statewide mandatory construction code that was developed and adopted by the California Building Standards Commission and the California Department of Housing and Community Development. The CALGreen standards require new residential and commercial buildings to comply with mandatory measures under the topics of planning and design, energy efficiency, water efficiency/conservation, material conservation and resource efficiency, and environmental quality. CALGreen also provides voluntary tiers and measures that local governments may adopt that encourage or require additional measures in the five green building topics. The most recent update to the CALGreen Code went into effect January 1, 2017.
Applicability to project: The project is new construction that is required to comply with the most current CALGreen regulations at the time of construction. |

Senate Bill 375 is codified at Government Code Sections 65080, 65400, 65583, 65584.01, 65584.02, 65584.04, 65587, 65588, 14522.1, 14522.2, and 65080.01, as well as at Public Resources Code Sections 21061.3 and 21159.28 and Chapter 4.2.
California Executive Orders

In addition to the legislation identified in Table 6, two Executive Orders—California Executive Order S-03-05 (2005) and California Executive Order B-30-15 (2015)—highlight GHG emissions reduction targets, although such targets have not been adopted by the State and remain only a goal of the Executive Orders. Specifically, Executive Order S-03-05 seeks to achieve a reduction of GHG emissions of 80 percent below 1990 levels by 2050, and Executive Order B-30-15 seeks to achieve a reduction of GHG emissions of 40 percent below 1990 levels by 2030. The Executive Orders are not laws but do provide the governor’s direction to state agencies in their actions to reinforce existing laws. For instance, as a result of the AB 32 legislation, the State’s 2020 reduction target is backed by the adopted first Scoping Plan, which provides a specific regulatory framework of requirements for achieving the 2020 reduction target. The State-led GHG reduction measures identified in Table 6, such as the Low Carbon Fuel Standard and the Renewables Portfolio Standard, are largely driven by the first Scoping Plan. Executive Orders S-03-05 and B-30-15 do not have any such framework and therefore provide no specific emissions reduction mechanisms.

Regional

Bay Area Air Quality Management District

In Alameda County, the air quality regulating authority is the BAAQMD, which adopts and enforces controls on stationary sources of air pollutants through its permit and inspection programs. Other responsibilities include monitoring air quality and responding to citizen complaints concerning air quality. The BAAQMD (2017a) includes directions, recommendations, and thresholds of significance for the analysis of a project’s GHG emissions in its CEQA Air Quality Guidelines.

Plan Bay Area 2040

As required by the Sustainable Communities and Climate Protection Act of 2008 (SB 375), the Association of Bay Area Governments and the Metropolitan Transportation Commission have developed a Sustainable Communities Strategy (SCS) as a component of Plan Bay Area 2040 (MTC and ABAG 2017). This plan seeks to reduce GHG and other mobile source emissions through coordinated transportation and land use planning to reduce vehicle miles traveled (VMT).

Local

City of San Leandro 2035 General Plan

The Environmental Hazards Element of the San Leandro (2016) General Plan contains an overview of climate change–related sea level rise. The element contains the following GHG emissions–related policy:

Policy EH-3.4 Design, Construction, and Operation. Require new development to be designed and constructed in a way that reduces the potential for future air quality problems, such as odors and the emission of any and all air pollutants. This should be done by:

(a) Requiring construction and grading practices that minimize airborne dust and particulate matter;
(b) Ensuring that best available control technology is used for operations that could generate air pollutants;

(c) Encouraging energy conservation and low-polluting energy sources;

(d) Promoting landscaping and tree planting to absorb carbon monoxide and other pollutants; and

(e) Implementing the complementary strategies to reduce greenhouse gases identified in the Climate Action Plan.

The General Plan Open Space, Parks, and Conservation Element contains an overview of climate change and GHG emissions. The element contains the following GHG emissions-related policies and actions potentially applicable to the project:

Policy OSC-7.9 Reducing Greenhouse Gases Through Land Use and Transportation Choices. Locate and design new development in a manner which maximizes the ability to use transit, walk, or bicycle for most trips, reduce dependence on fossil fuel powered vehicles, and reduce vehicle miles traveled.

Action OSC-7.9.B: Pedestrian Orientation. Implement design guidelines which encourage pedestrian friendly development and which de-emphasize the predominance of surface parking lots in transit-oriented development areas such as the BART stations and East 14th Street corridor.

Policy OSC-8.2 Planning and Building Practices. Encourage construction, landscaping, and site planning practices that minimize heating and cooling costs and ensure that energy is efficiently used. Local building codes and other City regulations and procedures should meet or exceed state and federal standards for energy conservation and efficiency, and support the City's greenhouse gas reduction goals.

City of San Leandro Climate Action Plan

The vision of the Climate Action Plan (CAP) is to guide the City of San Leandro toward a sustainable future that reduces greenhouse gas emissions from current levels while promoting economic prosperity for present and future generations. The Climate Action Plan seeks both to document the various programs San Leandro has implemented since 2005 and to consider new programs and actions that may be implemented to meet the City’s greenhouse gas reduction target of 25 percent below 2005 emissions levels by 2020 (San Leandro 2009).

The CAP contains the following GHG emissions-related goals potentially relevant to the project:

Goal: Promote green building practices in both the new construction and remodel market. A summary of measures and actions to promote green building practices include the following:

- Establish mandatory green building ordinance for private new construction. Require new building projects to achieve a minimum point level on an appropriate green
3.0 GREENHOUSE GASES SETTING

building checklist, such as GreenPoint Rated, LEED or California’s Green Building Code. There may be a minimum threshold for eligibility, such as 10,000 square feet for new commercial/industrial buildings.

- Identify and promote funding sources and other incentives to subsidize green buildings. Some PG&E incentive programs, such as the California Statewide Savings by Design program, may provide incentives for new construction that meet energy efficiency thresholds.

- Educate community members and local contractors on green building practices. For example, increase the number of green building events at the library, including hosting events at neighborhood library branches. Continue to participate in state-wide and national green building initiatives to promote green building practices.

Goal: Encourage development which promotes walkable communities. Policies to make San Leandro more attractive and inviting to pedestrian, bicyclists and public transit users are already articulated in the San Leandro General Plan, Transportation Element. Additionally, the City spent two years developing a Downtown Transit Oriented Development (TOD) Strategy that has received State recognition. The following measures and actions are highlighted for further consideration, as significant strategies to reduce greenhouse gas emissions in the community:

- Continue to support the implementation of the Downtown Transit Oriented Development (TOD) Strategy. Fosters better bus services in downtown and improved connectivity to BART system to promote ridership of public transit. Strategy incorporates increased height limits and minimum densities, and reduced parking requirements for sites near the BART station and along the East 14th Street transit corridor. This includes development of the San Leandro Crossings project, the downtown parking garage and the Albertsons and Town Hall Square sites.

- Develop design standards for parking lots and encourage placement to the rear of businesses. This would ensure that parking contributes positively to the overall character of the street and neighborhood.

- Allow reduced parking requirements where specific conditions are met. These conditions should include transportation demand management measures, such as shuttle buses to BART and other designations, carpooling and vanpooling programs, shared cars, and bicycle storage facilities.

Downtown San Leandro Transit-Oriented Development Strategy

The project would be developed in compliance with the City’s Downtown San Leandro Transit-Oriented Development [TOD] Strategy. The strategy was adopted in 2007 to establish a land use framework, a comprehensive circulation system, design and development guidelines, and a series of implementation actions to guide new development in a 502-acre area of downtown San Leandro. The strategy’s two guiding goals are to increase transit ridership and to enhance downtown San Leandro as a vibrant, pedestrian-oriented destination with a strong sense of place and civic identity (San Leandro 2007a). The project area is identified as part of Special Policy Area 5 in the strategy. Implementing the TOD strategy would help reduce GHG emissions in the Bay Area by reducing the vehicle miles traveled (VMT) per resident of the TOD area and would be consistent with the greenhouse gas reduction efforts promoted by Plan Bay Area 2040, described above.
3.0 GREENHOUSE GASES SETTING

This page intentionally left blank.
4.0 PROJECT IMPACT ANALYSIS

4.1 STANDARDS OF SIGNIFICANCE

Appendix G of the 2018 State CEQA Guidelines includes a list of topics related to air quality and greenhouse gases that may be considered in an environmental impact report or other environmental document prepared to comply with CEQA. For purposes of this assessment, the project would have a significant effect on the environment if it would:

1) Conflict with or obstruct implementation of any applicable air quality plan.
2) Violate any air quality standard or contribute substantially to an existing or projected air quality violation.
3) Expose sensitive receptors to substantial pollutant concentrations.
4) Create objectionable odors affecting a substantial number of people.
5) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is nonattainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors).
6) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment.
7) Conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of greenhouse gases.

Criteria Air Pollutant and Greenhouse Gas Thresholds

The BAAQMD (2017a) has adopted thresholds for the analysis of criteria air pollutant and GHG emissions impacts in its CEQA Air Quality Guidelines. The air district’s recommended significance thresholds are shown in Table 7. For GHG emissions, the BAAQMD recommends a bright-line threshold or an efficiency threshold based on emissions per service population.1 For this assessment, the project’s estimated GHG emissions are compared to the BAAQMD efficiency threshold.

<table>
<thead>
<tr>
<th>Project-Generated Emissions</th>
<th>Significance Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Construction</td>
</tr>
<tr>
<td>Criteria Air Pollutants an Precursors</td>
<td></td>
</tr>
<tr>
<td>ROG</td>
<td>54</td>
</tr>
<tr>
<td>NOx</td>
<td>54 lbs/day</td>
</tr>
<tr>
<td>PM_{10}</td>
<td>82 lbs/day exhaust *</td>
</tr>
<tr>
<td>PM_{2.5}</td>
<td>54 lbs/day exhaust *</td>
</tr>
</tbody>
</table>

* Service population is defined as a project’s residents plus employees.
4.0 Project Impact Analysis

<table>
<thead>
<tr>
<th>Project-Generated Emissions</th>
<th>Significance Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Construction</td>
</tr>
<tr>
<td>Greenhouse Gases</td>
<td></td>
</tr>
<tr>
<td>CO\textsubscript{2}e</td>
<td>None</td>
</tr>
</tbody>
</table>

Source: BAAQMD 2017a, Table 2-1

Notes:

a. For construction fugitive dust, BAAQMD recommends implementation of the Basic Construction Best Management Practices for all projects rather than a numeric threshold.

b. Service population is defined as a project’s residents plus employees.

Toxic Air Contaminant Thresholds

The BAAQMD (2017a) recommends a threshold of 10 in one million for an incremental increased cancer risk at any off-site receptor, and a threshold of 1.0 for a non-cancer risk hazard index (HI) at any off-site receptor due to project-generated TAC emissions.

Localized PM\textsubscript{2.5} Concentrations

The BAAQMD (2017a) recommends a threshold of 0.8 \textmu g/m3 of from all local sources for community health risks due to localized concentrations of PM\textsubscript{2.5}.

4.2 Methodology

Criteria Pollutants and Greenhouse Gases

Air quality impacts were assessed in accordance with methodologies recommended by CARB and the BAAQMD. The project’s criteria air pollutant and GHG emissions were modeled using California Emissions Estimator Model (CalEEMod) version 2016.3.2 (see Appendix A for project model output files). CalEEMod is a statewide land use emissions computer model designed to quantify potential criteria pollutant emissions associated with both construction and operation from a variety of land use projects. CalEEMod allows for the use of default data (e.g., emission factors, trip lengths, meteorology, source inventory, etc.) provided by the various California air districts to account for local requirements and conditions and/or user-defined inputs. The calculation methodology and input data used in CalEEMod can be found in the CalEEMod User’s Guide Appendices A, D, and E (CAPCOA 2017).

Construction

Construction emissions were estimated using the CalEEMod computer program using default data for Alameda County and inputs from the project’s grading and site plans. Separate models were created for the 844 Alvarado Street site and the 915 Antonio Street site. The square footage of buildings to be demolished was based on estimated dimensions using aerial photographs (Google Earth). Construction equipment requirements, usage rates, and the duration of each construction activity used in the model were based on model default assumptions and information provided by the project applicant. The schedule assumes a total project construction duration of approximately 32 months. Specific assumptions are included in Appendix A.
Operation

Operational emissions are primarily the result of vehicle trips generated by the project and area sources (energy use, water consumption, and wastewater and solid waste generation). Trip generation rates and the trip distances identified in the project’s transportation impact study (CHS Consulting Group 2018) were used in CalEEMod to estimate mobile criteria pollutant and precursor emissions. Area source emissions are based on CalEEMod defaults for land use types in the project. The operational emissions of the existing Filarmonica Artista Amadora de San Leandro facility would not be expected to increase when the FAASL moves to the new building at 844 Alvarado Street because the vehicle trips associated with operation of the facility are not expected to increase and the facility would benefit from the improved energy and water efficiency of a new building, as required by Title 24 of the California Code of Regulations. Therefore, operational emissions of the FAASL facility are assumed to be net zero and are not included in the analysis.

Health Effects of Project Emissions

Criteria pollutants that would be generated by the project are associated with some form of health risk. Those risks are summarized in Table 2, above. Adverse health effects induced by criteria pollutant emissions are highly dependent on a multitude of interconnected variables (e.g., cumulative concentrations, local meteorology and atmospheric conditions, the number and character of exposed individuals [e.g., age, gender]). In particular, ozone precursors (ROG and NOx) affect air quality on a regional scale. Health effects related to ozone are therefore the product of emissions generated by numerous sources throughout a region. As such, specific health outcomes from criteria pollutant emissions would be limited and cannot be solely traced to the incremental contribution from a single project.

Existing models have limited sensitivity to small changes in criteria pollutant concentrations—attempting to correlate the small amount of project-generated criteria pollutants to specific health effects or additional days of nonattainment would not yield meaningful results. Consequently, an analysis of impacts on human health associated with project-generated regional ROG and NOx emissions is not included in this assessment.

Because localized pollutants generated by a project can directly affect adjacent sensitive receptors, the analysis of project-related impacts on human health focuses on those localized pollutants with the greatest potential to result in a significant, material impact on human health. Consistent with the current state of practice and published guidance by CAPCOA (2009) and CARB (2000), the analysis in this assessment focuses only on those pollutants with the greatest potential to result in a significant, material impact on human health, which are TACs, including diesel PM, locally concentrated CO (i.e., CO hot spots) and PM2.5; and airborne asbestos potentially resulting from demolition and site preparation activities.

Locally Concentrated Carbon Monoxide

Carbon monoxide exceedances are caused by vehicular emissions, primarily when idling at intersections. Concentrations of CO are a direct function of the number of vehicles, length of delay, and traffic flow conditions. Areas of high CO concentrations, or “hot spots,” are typically associated with high-volume, congested intersections, or high-traffic areas with limited vertical mixing (e.g., tunnel, parking garage, bridge underpass, natural or urban street canyon, below-grade roadway). However, transport of this criteria pollutant is extremely limited, and CO disperses rapidly with distance from the source under normal meteorological conditions. Vehicle emissions standards have become increasingly more stringent in the last 20 years, resulting in steady
decreases in CO emissions. Currently, the CO standard in California is a maximum of 3.4 grams per mile for passenger car.

Projects meeting all of the following screening criteria would be considered to have a less than significant impact on localized CO concentrations (BAAQMD 2017a):

1. The project is consistent with an applicable congestion management program established by the county congestion management agency for designated roads or highways, regional transportation plans, and local congestion management agency plans.

2. The project traffic would not increase traffic volumes at affected intersections to more than 44,000 vehicles per hour.

3. The project traffic would not increase traffic volumes at affected intersections to more than 24,000 vehicles per hour where vertical and/or horizontal mixing is substantially limited.

Airborne Asbestos

The potential for release of airborne asbestos emissions during demolition activities was evaluated qualitatively based on the assumption that the existing buildings on the 915 Antonio Street site to be demolished could contain asbestos-containing material (ACM) and lead-based paint.

4.3 Project Impacts and Mitigation Measures

Consistency with the 2017 Air Quality Attainment Plan (Standard of Significance 1)

Impact 1 The project would not conflict with or obstruct implementation of the applicable air quality attainment plan. The impact is less than significant.

As part of its enforcement responsibilities, the EPA requires each state with nonattainment areas to prepare and submit a State Implementation Plan that demonstrates the means to attain the federal standards. The SIP must integrate federal, state, and local plan components and regulations to identify specific measures to reduce pollution in nonattainment areas, using a combination of performance standards and market-based programs. Similarly, under state law, the California Clean Air Act requires an air quality attainment plan to be prepared for areas designated as nonattainment with regard to the federal and state ambient air quality standards. Air quality attainment plans outline emissions limits and control measures to achieve and maintain these standards by the earliest practical date.

The BAAQMD (2017b) Bay Area 2017 Clean Air Plan is the most recent air quality planning document covering Alameda County. Air quality attainment plans are a compilation of new and previously submitted plans, programs (such as monitoring, modeling, permitting, etc.), district rules, state regulations, and federal controls describing how the state will attain ambient air quality standards for ozone and particulate matter. State law makes CARB the lead agency for all purposes related to the air quality attainment plan. Local air districts prepare air quality attainment plans and submit them to CARB for review and approval.

Per the BAAQMD (2017a), a project would not conflict with or obstruct implementation of the Bay Area 2017 Clean Air Plan if:

- The project supports the primary goals of the Clean Air Plan.
The project conforms to applicable control measures from the plan and does not disrupt or hinder the implementation of any Clean Air Plan control measures.

The primary goals of the Clean Air Plan are compliance with the state (California) and national ambient air quality standards. As discussed below in Impact 2, the project is below all of the thresholds of significance for criteria air pollutants listed in Table 7, above. The thresholds of significance provide lead agencies and project applicants with a conservative indication of whether the project could result in potentially significant air quality impacts. Therefore, the project would support the primary goals of the Clean Air Plan.

BAAQMD air quality planning control measures are developed, in part, based on the emissions inventories contained in the Clean Air Plan, which are derived from projected population growth and VMT for the region. These inventories are largely based on the predicted growth identified in regional and community general plans, including associated development projects. Projects that result in an increase in population or employment growth beyond that identified in regional or community plans could result in increases in VMT and subsequently increase mobile source emissions. These increases would not have been accounted for in the BAAQMD’s air quality plans, making those projects inconsistent with the Clean Air Plan.

The project would increase the population of the city by approximately 1,965 residents. The project would be consistent with the General Plan designation of Transit-Oriented Development Mixed Use and with the Downtown San Leandro Transit-Oriented Development Strategy. The anticipated population increase would be within the growth projections assumed in the General Plan and the project would not hinder implementation of the Clean Air Plan. Therefore, the project would not conflict with or obstruct implementation of the applicable air quality plan, and this impact would be less than significant.

Mitigation Measures
None required.

Short-Term Construction-Generated Pollutant Emissions (Standard of Significance 2)

Impact 2
Project-generated construction emissions would not exceed applicable significance thresholds for criteria air pollutants and ozone precursors. The impact would be less than significant.

The project would generate short-term criteria air pollutant and ozone precursor emissions from construction activities such as demolition, site grading, asphalt paving, building construction, and architectural coatings (e.g., painting). Common sources of construction emissions include fugitive dust from soil disturbance, fuel combustion from mobile heavy-duty diesel and gasoline-powered equipment, portable auxiliary equipment, and worker commute trips. During construction, fugitive dust, the predominant source of PM$_{10}$ and PM$_{2.5}$ emissions, would be generated when wheels or blades disturb surface materials. Uncontrolled dust from construction can become a nuisance and potential health hazard to those living and working nearby. Demolition can also generate fugitive dust PM$_{10}$ and PM$_{2.5}$ emissions. Off-road construction equipment is often diesel-powered and can be a substantial source of NO$_x$ emissions, in addition to exhaust PM$_{10}$ and exhaust PM$_{2.5}$ emissions. Worker commute trips and architectural coatings are dominant sources of ROG.

2 This project population estimate is based on the CalEEMod default of 2.86 residents per dwelling unit for mid-rise apartments in Alameda County (CAPCOA 2017)
emissions. Predicted unmitigated maximum daily construction-generated emissions for the project, including construction of the 844 Alvarado Street site and the 915 Antonio Street site, are summarized in Table 8.

<table>
<thead>
<tr>
<th>Construction Activities</th>
<th>Criteria Pollutant and Precursor Emissions (maximum pounds per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROG</td>
</tr>
<tr>
<td>844 Alvarado Street</td>
<td></td>
</tr>
<tr>
<td>2019 maximum daily emissions</td>
<td>9.8</td>
</tr>
<tr>
<td>915 San Antonio Street</td>
<td></td>
</tr>
<tr>
<td>2019 maximum daily emissions</td>
<td>4.6</td>
</tr>
<tr>
<td>2020 maximum daily emissions</td>
<td>3.5</td>
</tr>
<tr>
<td>2021 maximum daily emissions</td>
<td>48.6</td>
</tr>
<tr>
<td>Maximum Daily Emissions of All Years of Construction</td>
<td>48.6</td>
</tr>
<tr>
<td>BAAQMD Potentially Significant Impact Threshold</td>
<td>54</td>
</tr>
<tr>
<td>Exceed BAAQMD Threshold?</td>
<td>No</td>
</tr>
</tbody>
</table>

Source: CalEEMod version 2016.3.2. See Appendix A for emission model outputs.

Notes: a. Project construction activities are assumed to occur over a 32-month period.

As shown in Table 8, during construction, unmitigated short-term daily emissions associated with project development would not exceed the BAAQMD significance thresholds. Although unmitigated emissions would not exceed BAAQMD thresholds, the BAAQMD (2017a, Table 8-2) recommends implementation of the Basic Construction Mitigation Measures as mitigation for dust and exhaust construction impacts for all projects, regardless of whether construction emissions thresholds would be exceeded. Mitigation measure MM 1 would require implementation of the Basic Construction Mitigation Measures, which would further reduce emissions. In addition, as described in Impact 2, below, mitigation measure MM 2 (see Impact 5) would require all off-road diesel-powered construction equipment to have EPA-certified Tier 4 engines (or have verified equivalent emissions reductions). The use of Tier 4 engines would reduce project construction emissions of NO$_x$, exhaust PM$_{10}$, and exhaust PM$_{2.5}$. Predicted mitigated maximum daily construction-generated emissions for the project are summarized in Table 9.

<table>
<thead>
<tr>
<th>Construction Activities</th>
<th>Criteria Pollutant and Precursor Emissions (maximum pounds per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROG</td>
</tr>
<tr>
<td>844 Alvarado Street</td>
<td></td>
</tr>
<tr>
<td>2019 maximum daily emissions</td>
<td>9.6</td>
</tr>
</tbody>
</table>
4.0 Project Impact Analysis

Construction Activities

<table>
<thead>
<tr>
<th>Criteria Pollutant and Precursor Emissions (maximum pounds per day)</th>
<th>ROG</th>
<th>NOx</th>
<th>Exhaust PM$_{10}$</th>
<th>Exhaust PM$_{2.5}$</th>
<th>Fugitive Dust PM$_{10}$</th>
<th>Fugitive Dust PM$_{2.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>915 San Antonio Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019 maximum daily emissions</td>
<td>1.5</td>
<td>43.6</td>
<td>0.2</td>
<td>0.2</td>
<td>8.6</td>
<td>4.6</td>
</tr>
<tr>
<td>2020 maximum daily emissions</td>
<td>2.9</td>
<td>40.9</td>
<td>0.2</td>
<td>0.1</td>
<td>6.3</td>
<td>1.6</td>
</tr>
<tr>
<td>2021 maximum daily emissions</td>
<td>48.1</td>
<td>16.5</td>
<td>0.1</td>
<td>0.1</td>
<td>6.9</td>
<td>1.8</td>
</tr>
<tr>
<td>Maximum Daily Emissions of All Years of Construction</td>
<td>48.1</td>
<td>43.6</td>
<td>0.2</td>
<td>0.2</td>
<td>8.6</td>
<td>4.6</td>
</tr>
<tr>
<td>BAAQMD Potentially Significant Impact Threshold</td>
<td>54</td>
<td>54</td>
<td>82</td>
<td>54</td>
<td>Basic Construction Mitigation Measures</td>
<td>Basic Construction Mitigation Measures</td>
</tr>
</tbody>
</table>

| Exceed BAAQMD Threshold? | No | No | No | No | No | No |

Source: CalEEMod version 2016.3.2. See Appendix A for emission model outputs.

Notes: a. Project construction activities are assumed to occur over a 32-month period.
b. Emission estimates account for the quantifiable components of mitigation measures MM 1 and MM 2, specifically watering unpaved portions of the construction site twice daily, limiting off-road equipment to speeds of 15 mph, removing dirt track-out on adjacent public roads with a wet power vacuum once daily, and the use of Tier 4 diesel engines on off-road equipment with 50 or more horsepower.

As shown in Table 9, during construction, mitigated short-term daily emissions associated with project development would not exceed the BAAQMD significance thresholds. The impact would be **less than significant**.

Mitigation Measures

MM 1

During construction activities, the project applicant and/or its contractor shall ensure that the BAAQMD’s Basic Construction Mitigation Measures are implemented. The City shall ensure grading plan notes include these requirements prior to issuance of a grading permit, and shall monitor compliance during construction through site inspection(s).

1. All exposed surfaces (e.g., parking areas, staging areas, soil piles, graded areas, and unpaved access roads) shall be watered two times per day.
2. All haul trucks transporting soil, sand, or other loose material off-site shall be covered.
3. All visible mud or dirt track-out onto adjacent public roads shall be removed using wet power vacuum street sweepers at least once per day. The use of dry power sweeping is prohibited.
4. All vehicle speeds on unpaved roads shall be limited to 15 mph.
5. All roadways, driveways, and sidewalks to be paved shall be completed as soon as possible. Building pads shall be laid as soon as possible after grading unless seeding or soil binders are used.
6. Idling times shall be minimized either by shutting equipment off when not in use or reducing the maximum idling time to 5 minutes (as required by the California airborne toxics control measure Title 13, Section 2485 of the California Code of Regulations). Clear signage shall be provided for construction workers at all access points.

7. All construction equipment shall be maintained and properly tuned in accordance with manufacturer’s specifications. All equipment shall be checked by a certified visible emissions evaluator.

8. A publicly visible sign shall be posted with the telephone number and person to contact at City regarding dust complaints. This person shall respond and take corrective action within 48 hours. The air district’s phone number shall also be visible to ensure compliance with applicable regulations.

Operational Criteria Air Pollutants and Ozone Precursors (Standard of Significance 2)

Impact 3

Project-generated operational emissions would not exceed applicable significance thresholds for criteria air pollutants and ozone precursors. The impact would be less than significant.

The project would result in long-term operational emissions of criteria air pollutants and ozone precursors (e.g., ROG and NOx). Project-generated increases in emissions would be predominantly associated with motor vehicle use, energy required for commercial and residential building operations, energy used due to water consumption, energy used in solid waste collection and disposal, and area sources such as gas fireplaces and the use of landscaping equipment. All long-term operational emissions presented are calculated for the estimated first full year of project operations (2022). The emissions estimates account for BAAQMD Regulation 6, Rule 3: no wood-burning devices (e.g., fireplaces or woodstoves) shall be installed in new construction. Daily trip rates for the project’s operational-related vehicle trips used in the model were based the estimate of 2,144 daily trips for the project from the transportation impact study (CHS Consulting Group 2018). Long-term predicted maximum daily operational emissions are summarized in Table 10.

<table>
<thead>
<tr>
<th>Source</th>
<th>Emissions</th>
<th>ROG</th>
<th>NOx</th>
<th>Total PM$_{10}$</th>
<th>Total PM$_{2.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Emissions (Pounds per Day)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td></td>
<td>14.3</td>
<td>4.5</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Energy</td>
<td></td>
<td>0.2</td>
<td>1.6</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Mobile</td>
<td></td>
<td>3.6</td>
<td>20.9</td>
<td>10.6</td>
<td>2.9</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>18.1</td>
<td>27.4</td>
<td>11.4</td>
<td>3.7</td>
</tr>
<tr>
<td>Winter Emissions (Pounds per Day)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td></td>
<td>14.3</td>
<td>4.9</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Energy</td>
<td></td>
<td>0.2</td>
<td>1.6</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>
As shown in Table 10, operational emissions associated with project development would not exceed the BAAQMD significance thresholds for criteria air pollutants and ozone precursors. The impact would be less than significant.

Mitigation Measures

None required.

Local Mobile-Source CO Pollutant Concentrations (Standard of Significance 3)

Projects meeting all of the following screening criteria would be considered to have a less than significant impact on localized CO concentrations (BAAQMD 2017a):

1. The project is consistent with an applicable congestion management program established by the county congestion management agency for designated roads or highways, regional transportation plans, and local congestion management agency plans.

2. The project traffic would not increase traffic volumes at affected intersections to more than 44,000 vehicles per hour.

3. The project traffic would not increase traffic volumes at affected intersections to more than 24,000 vehicles per hour where vertical and/or horizontal mixing is substantially limited.

The busiest roadway in San Leandro is Interstate 880, which has a peak hourly traffic volume of 15,000 vehicles (Caltrans 2016). There are no intersections in San Leandro with the potential to have traffic volumes of more than 44,000 vehicles per hour, nor are there intersections where vertical and/or horizontal mixing is substantially limited and there is the potential to have traffic volumes of more than 24,000 vehicles per hour.
According to the project’s transportation impact study (CHS Consulting Group 2018), the project would conform to the standards outlined in the Downtown San Leandro Transit-Oriented Development Strategy and would be expected to generate trips that would be within the anticipated TOD Strategy Area vehicular trip generation at buildout. Growth projections in local planning documents such as the San Leandro General Plan and TOD Strategy are key input to Bay Area regional transportation and congestion management plans.

Therefore, the impact from project-generated localized concentrations of mobile-source CO would be **less than significant**.

Mitigation Measures

None required.

TAC Emissions During Construction Activities (Standard of Significance 3)

Impact 5 Construction of the project would generate diesel PM emissions that could result in community health risk in excess of applicable thresholds. The impact is **potentially significant**.

The project area is near residential neighborhoods adjacent to the 844 Alvarado Street site and across the railroad tracks to the west. Project construction would generate diesel PM emissions from the use of off-road diesel equipment required for demolition, site grading, excavation, and other construction activities. Diesel PM is the primary toxic air contaminant that would be emitted during construction. Health-related risks associated with diesel-exhaust emissions are primarily linked to long-term exposure and the associated risk of contracting cancer. The amount to which the receptors could be exposed, which is a function of concentration and duration of exposure, is the primary factor used to determine health risk.

According to the BAAQMD (2017a):

Due to the variable nature of construction activity, the generation of TAC emissions in most cases would be temporary, especially considering the short amount of time such equipment is typically within an influential distance that would result in the exposure of sensitive receptors to substantial concentrations. Concentrations of mobile-source diesel PM emissions are typically reduced by 70 percent at a distance of approximately 500 feet (ARB 2005). In addition, current models and methodologies for conducting health risk assessments are associated with longer-term exposure periods of 9, 40, and 70 years, which do not correlate well with the temporary and highly variable nature of construction activities. This results in difficulties with producing accurate estimates of health risk.

The California Office of Environmental Health Hazard Assessment (OEHHA) has developed risk assessment guidelines as part of the Air Toxics Hot Spots Program to meet the regulatory requirements for permitting of stationary sources of some pollutants subject to the Air Toxics “Hot Spots” Information and Assessment Act (AB 2588). The construction activities associated with the project are not a stationary source of pollutants subject to AB 2588 reporting or health risk assessment requirements. OEHHA has recognized that the tools and guidelines developed for the Hot Spots Program are sometimes used for short-term projects and has established some guidance for exposure duration to be used in analysis of short-term projects. However, OEHHA (2015) acknowledges that cancer potency factors are based on animal lifetime studies or worker studies where there is long-term exposure to the carcinogenic agent and there is considerable uncertainty in trying to evaluate the cancer risk from projects that will only last a small fraction of a lifetime.
4.0 Project Impact Analysis

Construction of the project is anticipated to occur over a 32-month period. The demolition, site preparation, and grading phase for construction at the 915 Antonio Street site would involve the heaviest use of diesel-powered construction equipment and would last approximately 5.5 months. The maximum on-site exhaust PM$_{10}$ emissions from construction activities are estimated to be 2.4 pounds per day, during demolition (see Appendix A, 915 Antonio Street Summer CalEEMod output file). The small size of the project sites (5.7 acres and 0.29 acres) would limit the size and number of heavy construction equipment that can work simultaneously. In addition, the use of diesel-powered equipment during construction would be temporary and episodic. Construction activities would be dispersed throughout the site and would not be concentrated along the property lines where the closest residences are located.

EPA-certified Tier 4 off-road diesel engines have exhaust reduction systems that reduce diesel PM emissions by more than 85 percent compared to earlier engines, and most construction equipment sold in the United States since 2015 is Tier 4 certified. Older construction equipment retrofitted with CARB-verified level 3 diesel particulate filters also reduce diesel PM emissions by more than 85 percent. Even though diesel PM generated by the project’s construction-related activities, during typical meteorological conditions, would not be expected to create an adverse effect on community health risks due the project’s short construction duration and small size, the use of Tier 4 engines or diesel particulate filters on off-road construction equipment would significantly reduce emissions and provide a margin of safety for public health risks during unusual meteorological conditions that could result in poor dispersion of diesel PM. Mitigation measure MM 2 would require the use of EPA-certified Tier 4 engines or the use of CARB-verified level 3 diesel particulate filters on all diesel off-road construction equipment with more than 50 horsepower. This impact would be less than significant with mitigation implemented.

Mitigation Measures

MM 2
During construction activities, the project applicant and/or its contractor shall ensure that all diesel-powered off-road construction equipment with more than 50 horsepower is EPA Tier 4 certified or retrofitted with a CARB-verified level 3 diesel particulate filter. Prior to issuance of a grading permit, the City shall ensure that grading plan notes include this requirement. The City shall monitor compliance by requiring the applicant’s contractor to provide written verification during construction.

Construction-Generated Airborne Asbestos (Standard of Significance 3)

Impact 6
Building demolition could result in airborne emissions of asbestos if asbestos-containing materials are present in the buildings. Compliance with existing regulations would ensure the impacts would be less than significant.

Construction of the project would involve demolition of existing buildings on the 915 Antonio Street site, which may contain ACM. Demolition would be subject to BAAQMD (1998) Regulation 11, Rule 2, Asbestos Demolition, Renovation and Manufacturing, which regulates the safe handling and disposal of asbestos-containing materials. California Health and Safety Code Section 19827.5 requires that local agencies not issue demolition permits until an applicant has demonstrated compliance with notification requirements under applicable federal regulations regarding hazardous air pollutants. The City of San Leandro would not issue a demolition permit until all requirements have been met. In accordance with the state regulation, the BAAQMD must be notified prior to demolition or abatement activities. Compliance with state and BAAQMD regulations, as implemented, monitored, and enforced through the City’s permitting process, would ensure the impacts due to ACMs would be less than significant.
Mitigation Measures

None required.

TAC and Localized PM$_{2.5}$ Emissions During Operation (Standard of Significance 3)

Impact 7 The project would not include any new sources of toxic air contaminant (TAC) or localized PM$_{2.5}$ emissions nor would the project exacerbate any existing conditions related to localized concentrations of TACs or PM$_{2.5}$. The impact would be **less than significant**.

Long-term operation of the project may result in emissions of diesel PM and PM$_{2.5}$ from occasional delivery trucks for the 550-square-foot café. A café of this small size would not be expected to require more than an average of one heavy truck delivery per day. Long-term operation of the residential component of the project would also add a small number of truck trips to existing traffic for trash collection (1 to 2 heavy trucks per week) and deliveries (not more than an average of 1 heavy truck per day). The additional trucks trips resulting from operation of the project would not contribute significantly to existing truck volumes on area roadways. Therefore, the project would not include any new sources of TACs, nor would the project exacerbate any existing conditions related to localized concentrations of TACs or PM$_{2.5}$. The impact would be **less than significant**.

The effect of existing sources of TACs or localized concentrations of air pollutants on future residents of the project is considered an effect of environment on the project and as such, is not a CEQA consideration. However, it is a planning consideration for the City in evaluating the project design and in determination of project approvals. The BAAQMD’s (2018) Planning Healthy Places website provides planning-level guidance regarding existing sources of TACs. The website has an interactive map which shows areas that are estimated to have elevated levels of air pollution and/or TACs resulting from permitted stationary sources and high-volume roadways. The interactive map does not show any TAC sources or areas with elevated vehicle emissions of concern for future residents of the project.

Mitigation Measures

None required.

Objectionable Odors (Standard of Significance 4)

Impact 8 The project would not include uses that would create objectionable odors affecting a substantial number of people. The impact is **less than significant**.

Heavy-duty construction equipment used for the construction of the project would emit odors. However, construction activity would be short term and finite in nature. Equipment exhaust odors would dissipate and would be minimized by the implementation of mitigation measures **MM 1** and **MM 2**, above, which would reduce diesel exhaust emissions and control fugitive dust. For these reasons, construction of the project would not create objectionable odors affecting a substantial number of people. Thus, the impact is considered **less than significant**.

For operational odor impacts, the project proposes land uses including a restaurant and residential apartments, none of which is identified as an odor source in the BAAQMD (2017a) CEQA Air Quality Guidelines. Therefore, no substantial operational odor impacts are anticipated, and the impact would be **less than significant**.
Mitigation Measures

None required.

4.4 **Cumulative Setting, Impacts, and Mitigation Measures**

Cumulative Setting

The cumulative setting for criteria pollutant air quality includes existing, approved, proposed, and reasonably foreseeable development in the SFBAAB. For greenhouse gas emissions, as described in Section 3.0, greenhouse gas impacts on global climate change are inherently cumulative.

For impacts such as the potential release of TACs during construction (e.g., diesel PM and airborne asbestos), the impacts are localized and limited in both duration and frequency. Activities must be managed in accordance with health and safety regulations to minimize off-site impacts. As such, the project’s contribution would not be cumulatively considerable, and further evaluation is not required. Similarly, construction odors, if any, would be transient. The project would not be a permanent source of odors, and there are no odor sources in the immediate project vicinity with which the project would combine to create a cumulative impact.

Cumulative Impacts and Mitigation Measures

Criteria Air Pollutants and Ozone Precursors (Standard of Significance 5)

Impact 9 Operation of the project, in combination with cumulative development in the SFBAAB, would result in an increase in criteria air pollutants and ozone precursors. The project’s contribution would be **less than cumulatively considerable**.

According to the BAAQMD (2017a), no single project is sufficient in size, by itself, to result in nonattainment of ambient air quality standards. Instead, a project’s individual emissions contribute to existing cumulatively significant adverse air quality impacts. In developing thresholds of significance for air pollutants, the BAAQMD considered the emissions levels for which a project’s individual emissions would be cumulatively considerable. According to the BAAQMD (2017a), if a project exceeds the district’s identified significance thresholds, the project would be cumulatively considerable. As discussed in Impacts 2 and 3, above, the project’s construction emissions and operational emissions would be below the BAAQMD thresholds. Therefore, the project would not result in a cumulatively considerable net increase of criteria pollutants and ozone precursors. The cumulative impact would be **less than cumulatively considerable**.

Mitigation Measures

None required.

Generate Greenhouse Gas Emissions (Standard of Significance 6)

Impact 10 The project would not result in greenhouse gas emissions that would further contribute to significant impacts on the environment. The project’s contribution would be **less than cumulatively considerable**.
GHG emissions associated with new development occur over the short term from construction activities, consisting primarily of emissions from equipment exhaust, as well as long-term regional emissions, primarily associated with new vehicular trips and indirect source emissions, such as electricity usage, and energy usage in water distribution, sewage treatment, and solid waste disposal.

Construction GHG Emissions

The BAAQMD does not have an adopted threshold of significance for construction-related GHG emissions. However, the BAAQMD recommends quantification and disclosure of GHG emissions that would occur during construction. The projected annual GHG emissions generated by project construction-related activities are shown in Table 11. To be conservative in analyzing the project’s potential contribution to regional GHG emissions, the total estimated GHG emissions from the project’s construction activities are amortized over the 30-year expected life span of the structures and included in the project’s estimated operational GHG emissions.

TABLE 11
CONSTRUCTION-RELATED GREENHOUSE GAS EMISSIONS

<table>
<thead>
<tr>
<th>Construction Year</th>
<th>844 Alvarado Street</th>
<th>915 Antonio Street</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>68.6</td>
<td>408.7</td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td>1,174.7</td>
</tr>
<tr>
<td>2021</td>
<td></td>
<td>901.3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2,553.3</td>
</tr>
</tbody>
</table>

Amortized Construction Emissions

| 2,553.3 metric tons/30 years | 85.1 |

Source: CalEEMod version 2016.3.2. See Appendix A for emission model outputs.

Notes: Project construction activities are assumed to occur over a 32-month period.

Operational GHG Emissions

BAAQMD (2017a) CEQA Guidelines Appendix D provides the justification and substantial evidence supporting the service population efficiency GHG threshold of 4.6 metric tons CO$_2$e per service population per year. This current BAAQMD service population efficiency GHG threshold is intended to achieve the requirements of AB 32 to reduce GHG emissions to 1990 levels by the year 2020. SB 32 requires that California, by the year 2030, reduce its statewide GHG emissions such that they are 40 percent below those that occurred in 1990. Accordingly, a service population efficiency threshold of 2.8 metric tons CO$_2$e per service population per year that is 40 percent lower than the current BAAQMD threshold would achieve the state GHG emission targets for 2030. This estimated threshold is a surrogate threshold while the BAAQMD develops thresholds to comply with SB 32. Service population is defined as project residents plus project employees. Using the CalEEMod default population factor of 2.86 people per dwelling unit for mid-rise apartments in Alameda County (CAPCOA 2017), the project’s residential population is estimated to be 1,965,
and assuming 5 employees for the 550-square-foot café, and 3 employees for the apartments, the total service population would be 1,973.

The project’s GHG emissions estimates assume emissions reductions per BAAQMD (2015) Regulation 6, Rule 3 (no wood-burning devices shall be installed in new building construction). Daily trip rates for the project’s operational-related vehicle trips used in the model were based on the estimate of 2,144 daily trips from the transportation impact study (CHS Consulting Group 2018). This daily trip generation estimate accounts for reductions resulting from development in a designated TOD area. The project’s estimated GHG emissions are summarized in Table 12.

Table 12

<table>
<thead>
<tr>
<th>Emissions Source</th>
<th>Metric Tons CO(_2)e per Year (^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction (amortized over 30 years)</td>
<td>85.1</td>
</tr>
<tr>
<td>Area</td>
<td>36.2</td>
</tr>
<tr>
<td>Energy</td>
<td>1,783.4</td>
</tr>
<tr>
<td>Mobile</td>
<td>2,204.6</td>
</tr>
<tr>
<td>Waste</td>
<td>164.8</td>
</tr>
<tr>
<td>Water</td>
<td>164.5</td>
</tr>
<tr>
<td>Total</td>
<td>4,438.6</td>
</tr>
</tbody>
</table>

Efficiency (Total GHG 4,438.6/Service Population 1,973) (Metric Tons CO\(_2\)e/Service Population/Year) 2.25

Annual Threshold Comparison

<table>
<thead>
<tr>
<th>Exceed Threshold?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
</tbody>
</table>

Source: CalEEMod version 2016.3.2 See Appendix A for emission model outputs.

Notes: a. Emissions estimates account for BAAQMD Regulation 6, Rule 3, no wood-burning devices in new construction.

As shown in Table 12, project-related operational GHG emissions would not exceed the service population efficiency threshold. Therefore, the impact would be **less than cumulatively considerable**.

Mitigation Measures

None required.

Consistency with Applicable GHG Emissions Reduction Plans (Standard of Significance 2)

Impact 11

The project would not generate GHG emissions that would be cumulatively considerable. The project would therefore not conflict with the applicable state and regional GHG emissions reduction plans. The impact would be **less than cumulatively considerable**.
Climate Change Scoping Plan/AB 32 and SB 32

As discussed in Impact 10, the project would not exceed the operational threshold for GHG emissions applied to the project. The project’s GHG emissions would therefore not conflict with the CARB Climate Change Scoping Plan and the GHG emission reduction goals of AB 32 and SB 32.

Plan Bay Area 2040

As required by the Sustainable Communities and Climate Protection Act of 2008 (SB 375), MTC and ABAG (2017) have developed a Sustainable Communities Strategy (SCS) as a component of Plan Bay Area 2040. This plan seeks to reduce GHG and other mobile source emissions through coordinated transportation and land use planning to reduce VMT. As a high-density mixed-use development in a designated Transit-Oriented Development area, the project is consistent with the regional VMT and GHG reduction strategies contained in Plan Bay Area 2040.

Downtown San Leandro Transit-Oriented Development Strategy

The project would be developed in compliance with TOD Strategy. The strategy’s two guiding goals are to increase transit ridership and to enhance downtown San Leandro as a vibrant, pedestrian-oriented destination with a strong sense of place and civic identity (San Leandro 2007a). The project area is identified as part of Special Policy Area 5 in the strategy. Implementing the TOD Strategy would help reduce GHG emissions in the Bay Area by reducing VMT per resident of the TOD area and would be consistent with the GHG reduction efforts promoted by Plan Bay Area 2040, described above.

San Leandro Climate Action Plan

The project is within the TOD area, which was identified in the Climate Action Plan’s goal to encourage development that promotes walkable communities. The project is a high-density residential mixed-use development in close proximity to the San Leandro BART station, which supports the implementation of the TOD Strategy. Therefore, the project is consistent with the CAP.

Summary

The project would not conflict with or obstruct implementation of applicable GHG emissions reduction plans. The impact would be less than cumulatively considerable.

Mitigation Measures

None required.
5.0 CONCLUSION

Implementation of the project would result in emissions or air pollutants and greenhouse gases. Using the standards of significance identified in Appendix G of the 2018 CEQA Guidelines for the evaluation of air quality and greenhouse gas emissions, 11 impacts were identified. These impacts, their significance, and mitigation measures are summarized in Table 12.

<table>
<thead>
<tr>
<th>Impact</th>
<th>Significance</th>
<th>Mitigation Measures</th>
<th>Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Consistency with the Air Quality Attainment Plan</td>
<td>Less Than Significant</td>
<td>None</td>
<td>Less Than Significant</td>
</tr>
<tr>
<td>2. Construction Criteria Pollutants</td>
<td>Less Than Significant</td>
<td>MM 1 – BAAQMD Basic Construction Mitigation Measures</td>
<td>Less Than Significant</td>
</tr>
<tr>
<td>3. Operational Criteria Pollutants</td>
<td>Less Than Significant</td>
<td>None</td>
<td>Less Than Significant</td>
</tr>
<tr>
<td>4. Local CO Pollutant Concentrations</td>
<td>Less Than Significant</td>
<td>None</td>
<td>Less Than Significant</td>
</tr>
<tr>
<td>5. TAC Emissions During Construction Activities</td>
<td>Potentially Significant</td>
<td>MM 2 – Tier 4 engines or diesel particulate filters</td>
<td>Less Than Significant</td>
</tr>
<tr>
<td>6. Construction-Generated Airborne Asbestos</td>
<td>Less Than Significant</td>
<td>None</td>
<td>Less Than Significant</td>
</tr>
<tr>
<td>7. TAC and Localized PM$_{2.5}$ Emissions During Operation</td>
<td>Less Than Significant</td>
<td>None</td>
<td>Less Than Significant</td>
</tr>
<tr>
<td>8. Objectionable Odors</td>
<td>Less Than Significant</td>
<td>None</td>
<td>Less Than Significant</td>
</tr>
<tr>
<td>9. Cumulatively Considerable Net Increase in Criteria Air Pollutants</td>
<td>Less Than Cumulatively Considerable</td>
<td>None</td>
<td>Less Than Cumulatively Considerable</td>
</tr>
<tr>
<td>10. Generate GHG Emissions</td>
<td>Less Than Cumulatively Considerable</td>
<td>None</td>
<td>Less Than Significant</td>
</tr>
<tr>
<td>11. Conflict with GHG Emissions Reduction Plans</td>
<td>Less Than Cumulatively Considerable</td>
<td>None</td>
<td>Less Than Cumulatively Considerable</td>
</tr>
</tbody>
</table>
5.0 CONCLUSION

This page intentionally left blank.
REFERENCES

California Department of Water Resources. 2008. Climate Change Impacts on California’s Water.

CAPCOA (California Air Pollution Control Officers Association). 2008. CEQA and Climate Change.

———. 2014. First Update to the Climate Change Scoping Plan.

REFERENCES

MTC and ABAG (Metropolitan Transportation Commission and Association of Bay Area Governments). 2017. Plan Bay Area 2040.

